Statement
Given a convex body C in Rn and a hyperplane H, the width of C parallel to H, w(C,H), is the distance between the two supporting hyperplanes of C that are parallel to H. The smallest such distance (i.e. the infimum over all possible hyperplanes) is called the minimal width of C, w(C).
The (closed) set of points P between two distinct, parallel hyperplanes in Rn is called a plank, and the distance between the two hyperplanes is called the width of the plank, w(P). Tarski conjectured that if a convex body C of minimal width w(C) was covered by a collection of planks, then the sum of the widths of those planks must be at least w(C). That is, if P1,…,Pm are planks such that
then
Bang proved this is indeed the case.
Read more about this topic: Tarski's Plank Problem
Famous quotes containing the word statement:
“Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. I dont have any whisky, may be a fact but it is not a truth.”
—William Burroughs (b. 1914)
“Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.”
—Charles Sanders Peirce (18391914)
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)