Divisors of The Numbers 1 To 100
n | Divisors | d(n) | σ(n) | s(n) | Notes |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | deficient, highly abundant, superabundant, highly composite |
2 | 1, 2 | 2 | 3 | 1 | deficient, highly abundant, superabundant, colossally abundant, prime, highly composite, superior highly composite |
3 | 1, 3 | 2 | 4 | 1 | deficient, highly abundant, prime |
4 | 1, 2, 4 | 3 | 7 | 3 | deficient, highly abundant, superabundant, composite, highly composite |
5 | 1, 5 | 2 | 6 | 1 | deficient, prime |
6 | 1, 2, 3, 6 | 4 | 12 | 6 | perfect, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
7 | 1, 7 | 2 | 8 | 1 | deficient, prime |
8 | 1, 2, 4, 8 | 4 | 15 | 7 | deficient, highly abundant, composite |
9 | 1, 3, 9 | 3 | 13 | 4 | deficient, composite |
10 | 1, 2, 5, 10 | 4 | 18 | 8 | deficient, highly abundant, composite |
11 | 1, 11 | 2 | 12 | 1 | deficient, prime |
12 | 1, 2, 3, 4, 6, 12 | 6 | 28 | 16 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
13 | 1, 13 | 2 | 14 | 1 | deficient, prime |
14 | 1, 2, 7, 14 | 4 | 24 | 10 | deficient, composite |
15 | 1, 3, 5, 15 | 4 | 24 | 9 | deficient, composite |
16 | 1, 2, 4, 8, 16 | 5 | 31 | 15 | deficient, highly abundant, composite |
17 | 1, 17 | 2 | 18 | 1 | deficient, prime |
18 | 1, 2, 3, 6, 9, 18 | 6 | 39 | 21 | abundant, highly abundant, composite |
19 | 1, 19 | 2 | 20 | 1 | deficient, prime |
20 | 1, 2, 4, 5, 10, 20 | 6 | 42 | 22 | abundant, highly abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
21 | 1, 3, 7, 21 | 4 | 32 | 11 | deficient, composite |
22 | 1, 2, 11, 22 | 4 | 36 | 14 | deficient, composite |
23 | 1, 23 | 2 | 24 | 1 | deficient, prime |
24 | 1, 2, 3, 4, 6, 8, 12, 24 | 8 | 60 | 36 | abundant, highly abundant, superabundant, composite, highly composite |
25 | 1, 5, 25 | 3 | 31 | 6 | deficient, composite |
26 | 1, 2, 13, 26 | 4 | 42 | 16 | deficient, composite |
27 | 1, 3, 9, 27 | 4 | 40 | 13 | deficient, composite |
28 | 1, 2, 4, 7, 14, 28 | 6 | 56 | 28 | perfect, composite |
29 | 1, 29 | 2 | 30 | 1 | deficient, prime |
30 | 1, 2, 3, 5, 6, 10, 15, 30 | 8 | 72 | 42 | abundant, highly abundant, composite |
31 | 1, 31 | 2 | 32 | 1 | deficient, prime |
32 | 1, 2, 4, 8, 16, 32 | 6 | 63 | 31 | deficient, composite |
33 | 1, 3, 11, 33 | 4 | 48 | 15 | deficient, composite |
34 | 1, 2, 17, 34 | 4 | 54 | 20 | deficient, composite |
35 | 1, 5, 7, 35 | 4 | 48 | 13 | deficient, composite |
36 | 1, 2, 3, 4, 6, 9, 12, 18, 36 | 9 | 91 | 55 | abundant, highly abundant, superabundant, composite, highly composite |
37 | 1, 37 | 2 | 38 | 1 | deficient, prime |
38 | 1, 2, 19, 38 | 4 | 60 | 22 | deficient, composite |
39 | 1, 3, 13, 39 | 4 | 56 | 17 | deficient, composite |
40 | 1, 2, 4, 5, 8, 10, 20, 40 | 8 | 90 | 50 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
41 | 1, 41 | 2 | 42 | 1 | deficient, prime |
42 | 1, 2, 3, 6, 7, 14, 21, 42 | 8 | 96 | 54 | abundant, highly abundant, composite |
43 | 1, 43 | 2 | 44 | 1 | deficient, prime |
44 | 1, 2, 4, 11, 22, 44 | 6 | 84 | 40 | deficient, composite |
45 | 1, 3, 5, 9, 15, 45 | 6 | 78 | 33 | deficient, composite |
46 | 1, 2, 23, 46 | 4 | 72 | 26 | deficient, composite |
47 | 1, 47 | 2 | 48 | 1 | deficient, prime |
48 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 | 10 | 124 | 76 | abundant, highly abundant, superabundant, composite, highly composite |
49 | 1, 7, 49 | 3 | 57 | 8 | deficient, composite |
50 | 1, 2, 5, 10, 25, 50 | 6 | 93 | 43 | deficient, composite |
51 | 1, 3, 17, 51 | 4 | 72 | 21 | deficient, composite |
52 | 1, 2, 4, 13, 26, 52 | 6 | 98 | 46 | deficient, composite |
53 | 1, 53 | 2 | 54 | 1 | deficient, prime |
54 | 1, 2, 3, 6, 9, 18, 27, 54 | 8 | 120 | 66 | abundant, composite |
55 | 1, 5, 11, 55 | 4 | 72 | 17 | deficient, composite |
56 | 1, 2, 4, 7, 8, 14, 28, 56 | 8 | 120 | 64 | abundant, composite |
57 | 1, 3, 19, 57 | 4 | 80 | 23 | deficient, composite |
58 | 1, 2, 29, 58 | 4 | 90 | 32 | deficient, composite |
59 | 1, 59 | 2 | 60 | 1 | deficient, prime |
60 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 | 12 | 168 | 108 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
61 | 1, 61 | 2 | 62 | 1 | deficient, prime |
62 | 1, 2, 31, 62 | 4 | 96 | 34 | deficient, composite |
63 | 1, 3, 7, 9, 21, 63 | 6 | 104 | 41 | deficient, composite |
64 | 1, 2, 4, 8, 16, 32, 64 | 7 | 127 | 63 | deficient, composite |
65 | 1, 5, 13, 65 | 4 | 84 | 19 | deficient, composite |
66 | 1, 2, 3, 6, 11, 22, 33, 66 | 8 | 144 | 78 | abundant, composite |
67 | 1, 67 | 2 | 68 | 1 | deficient, prime |
68 | 1, 2, 4, 17, 34, 68 | 6 | 126 | 58 | deficient, composite |
69 | 1, 3, 23, 69 | 4 | 96 | 27 | deficient, composite |
70 | 1, 2, 5, 7, 10, 14, 35, 70 | 8 | 144 | 74 | abundant, composite, weird |
71 | 1, 71 | 2 | 72 | 1 | deficient, prime |
72 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 | 12 | 195 | 123 | abundant, highly abundant, composite |
73 | 1, 73 | 2 | 74 | 1 | deficient, prime |
74 | 1, 2, 37, 74 | 4 | 114 | 40 | deficient, composite |
75 | 1, 3, 5, 15, 25, 75 | 6 | 124 | 49 | deficient, composite |
76 | 1, 2, 4, 19, 38, 76 | 6 | 140 | 64 | deficient, composite |
77 | 1, 7, 11, 77 | 4 | 96 | 19 | deficient, composite |
78 | 1, 2, 3, 6, 13, 26, 39, 78 | 8 | 168 | 90 | abundant, composite |
79 | 1, 79 | 2 | 80 | 1 | deficient, prime |
80 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 | 10 | 186 | 106 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
81 | 1, 3, 9, 27, 81 | 5 | 121 | 40 | deficient, composite |
82 | 1, 2, 41, 82 | 4 | 126 | 44 | deficient, composite |
83 | 1, 83 | 2 | 84 | 1 | deficient, prime |
84 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 | 12 | 224 | 140 | abundant, highly abundant, composite |
85 | 1, 5, 17, 85 | 4 | 108 | 23 | deficient, composite |
86 | 1, 2, 43, 86 | 4 | 132 | 46 | deficient, composite |
87 | 1, 3, 29, 87 | 4 | 120 | 33 | deficient, composite |
88 | 1, 2, 4, 8, 11, 22, 44, 88 | 8 | 180 | 92 | abundant, composite |
89 | 1, 89 | 2 | 90 | 1 | deficient, prime |
90 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 | 12 | 234 | 144 | abundant, highly abundant, composite |
91 | 1, 7, 13, 91 | 4 | 112 | 21 | deficient, composite |
92 | 1, 2, 4, 23, 46, 92 | 6 | 168 | 76 | deficient, composite |
93 | 1, 3, 31, 93 | 4 | 128 | 35 | deficient, composite |
94 | 1, 2, 47, 94 | 4 | 144 | 50 | deficient, composite |
95 | 1, 5, 19, 95 | 4 | 120 | 25 | deficient, composite |
96 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 | 12 | 252 | 156 | abundant, highly abundant, composite |
97 | 1, 97 | 2 | 98 | 1 | deficient, prime |
98 | 1, 2, 7, 14, 49, 98 | 6 | 171 | 73 | deficient, composite |
99 | 1, 3, 9, 11, 33, 99 | 6 | 156 | 57 | deficient, composite |
100 | 1, 2, 4, 5, 10, 20, 25, 50, 100 | 9 | 217 | 117 | abundant, composite |
Read more about this topic: Table Of Divisors
Famous quotes containing the word numbers:
“I had but three chairs in my house; one for solitude, two for friendship; three for society. When visitors came in larger and unexpected numbers there was but the third chair for them all, but they generally economized the room by standing up.”
—Henry David Thoreau (18171862)