Divisors of The Numbers 1 To 100
n | Divisors | d(n) | σ(n) | s(n) | Notes |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | deficient, highly abundant, superabundant, highly composite |
2 | 1, 2 | 2 | 3 | 1 | deficient, highly abundant, superabundant, colossally abundant, prime, highly composite, superior highly composite |
3 | 1, 3 | 2 | 4 | 1 | deficient, highly abundant, prime |
4 | 1, 2, 4 | 3 | 7 | 3 | deficient, highly abundant, superabundant, composite, highly composite |
5 | 1, 5 | 2 | 6 | 1 | deficient, prime |
6 | 1, 2, 3, 6 | 4 | 12 | 6 | perfect, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
7 | 1, 7 | 2 | 8 | 1 | deficient, prime |
8 | 1, 2, 4, 8 | 4 | 15 | 7 | deficient, highly abundant, composite |
9 | 1, 3, 9 | 3 | 13 | 4 | deficient, composite |
10 | 1, 2, 5, 10 | 4 | 18 | 8 | deficient, highly abundant, composite |
11 | 1, 11 | 2 | 12 | 1 | deficient, prime |
12 | 1, 2, 3, 4, 6, 12 | 6 | 28 | 16 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
13 | 1, 13 | 2 | 14 | 1 | deficient, prime |
14 | 1, 2, 7, 14 | 4 | 24 | 10 | deficient, composite |
15 | 1, 3, 5, 15 | 4 | 24 | 9 | deficient, composite |
16 | 1, 2, 4, 8, 16 | 5 | 31 | 15 | deficient, highly abundant, composite |
17 | 1, 17 | 2 | 18 | 1 | deficient, prime |
18 | 1, 2, 3, 6, 9, 18 | 6 | 39 | 21 | abundant, highly abundant, composite |
19 | 1, 19 | 2 | 20 | 1 | deficient, prime |
20 | 1, 2, 4, 5, 10, 20 | 6 | 42 | 22 | abundant, highly abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
21 | 1, 3, 7, 21 | 4 | 32 | 11 | deficient, composite |
22 | 1, 2, 11, 22 | 4 | 36 | 14 | deficient, composite |
23 | 1, 23 | 2 | 24 | 1 | deficient, prime |
24 | 1, 2, 3, 4, 6, 8, 12, 24 | 8 | 60 | 36 | abundant, highly abundant, superabundant, composite, highly composite |
25 | 1, 5, 25 | 3 | 31 | 6 | deficient, composite |
26 | 1, 2, 13, 26 | 4 | 42 | 16 | deficient, composite |
27 | 1, 3, 9, 27 | 4 | 40 | 13 | deficient, composite |
28 | 1, 2, 4, 7, 14, 28 | 6 | 56 | 28 | perfect, composite |
29 | 1, 29 | 2 | 30 | 1 | deficient, prime |
30 | 1, 2, 3, 5, 6, 10, 15, 30 | 8 | 72 | 42 | abundant, highly abundant, composite |
31 | 1, 31 | 2 | 32 | 1 | deficient, prime |
32 | 1, 2, 4, 8, 16, 32 | 6 | 63 | 31 | deficient, composite |
33 | 1, 3, 11, 33 | 4 | 48 | 15 | deficient, composite |
34 | 1, 2, 17, 34 | 4 | 54 | 20 | deficient, composite |
35 | 1, 5, 7, 35 | 4 | 48 | 13 | deficient, composite |
36 | 1, 2, 3, 4, 6, 9, 12, 18, 36 | 9 | 91 | 55 | abundant, highly abundant, superabundant, composite, highly composite |
37 | 1, 37 | 2 | 38 | 1 | deficient, prime |
38 | 1, 2, 19, 38 | 4 | 60 | 22 | deficient, composite |
39 | 1, 3, 13, 39 | 4 | 56 | 17 | deficient, composite |
40 | 1, 2, 4, 5, 8, 10, 20, 40 | 8 | 90 | 50 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
41 | 1, 41 | 2 | 42 | 1 | deficient, prime |
42 | 1, 2, 3, 6, 7, 14, 21, 42 | 8 | 96 | 54 | abundant, highly abundant, composite |
43 | 1, 43 | 2 | 44 | 1 | deficient, prime |
44 | 1, 2, 4, 11, 22, 44 | 6 | 84 | 40 | deficient, composite |
45 | 1, 3, 5, 9, 15, 45 | 6 | 78 | 33 | deficient, composite |
46 | 1, 2, 23, 46 | 4 | 72 | 26 | deficient, composite |
47 | 1, 47 | 2 | 48 | 1 | deficient, prime |
48 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 | 10 | 124 | 76 | abundant, highly abundant, superabundant, composite, highly composite |
49 | 1, 7, 49 | 3 | 57 | 8 | deficient, composite |
50 | 1, 2, 5, 10, 25, 50 | 6 | 93 | 43 | deficient, composite |
51 | 1, 3, 17, 51 | 4 | 72 | 21 | deficient, composite |
52 | 1, 2, 4, 13, 26, 52 | 6 | 98 | 46 | deficient, composite |
53 | 1, 53 | 2 | 54 | 1 | deficient, prime |
54 | 1, 2, 3, 6, 9, 18, 27, 54 | 8 | 120 | 66 | abundant, composite |
55 | 1, 5, 11, 55 | 4 | 72 | 17 | deficient, composite |
56 | 1, 2, 4, 7, 8, 14, 28, 56 | 8 | 120 | 64 | abundant, composite |
57 | 1, 3, 19, 57 | 4 | 80 | 23 | deficient, composite |
58 | 1, 2, 29, 58 | 4 | 90 | 32 | deficient, composite |
59 | 1, 59 | 2 | 60 | 1 | deficient, prime |
60 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 | 12 | 168 | 108 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
61 | 1, 61 | 2 | 62 | 1 | deficient, prime |
62 | 1, 2, 31, 62 | 4 | 96 | 34 | deficient, composite |
63 | 1, 3, 7, 9, 21, 63 | 6 | 104 | 41 | deficient, composite |
64 | 1, 2, 4, 8, 16, 32, 64 | 7 | 127 | 63 | deficient, composite |
65 | 1, 5, 13, 65 | 4 | 84 | 19 | deficient, composite |
66 | 1, 2, 3, 6, 11, 22, 33, 66 | 8 | 144 | 78 | abundant, composite |
67 | 1, 67 | 2 | 68 | 1 | deficient, prime |
68 | 1, 2, 4, 17, 34, 68 | 6 | 126 | 58 | deficient, composite |
69 | 1, 3, 23, 69 | 4 | 96 | 27 | deficient, composite |
70 | 1, 2, 5, 7, 10, 14, 35, 70 | 8 | 144 | 74 | abundant, composite, weird |
71 | 1, 71 | 2 | 72 | 1 | deficient, prime |
72 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 | 12 | 195 | 123 | abundant, highly abundant, composite |
73 | 1, 73 | 2 | 74 | 1 | deficient, prime |
74 | 1, 2, 37, 74 | 4 | 114 | 40 | deficient, composite |
75 | 1, 3, 5, 15, 25, 75 | 6 | 124 | 49 | deficient, composite |
76 | 1, 2, 4, 19, 38, 76 | 6 | 140 | 64 | deficient, composite |
77 | 1, 7, 11, 77 | 4 | 96 | 19 | deficient, composite |
78 | 1, 2, 3, 6, 13, 26, 39, 78 | 8 | 168 | 90 | abundant, composite |
79 | 1, 79 | 2 | 80 | 1 | deficient, prime |
80 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 | 10 | 186 | 106 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
81 | 1, 3, 9, 27, 81 | 5 | 121 | 40 | deficient, composite |
82 | 1, 2, 41, 82 | 4 | 126 | 44 | deficient, composite |
83 | 1, 83 | 2 | 84 | 1 | deficient, prime |
84 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 | 12 | 224 | 140 | abundant, highly abundant, composite |
85 | 1, 5, 17, 85 | 4 | 108 | 23 | deficient, composite |
86 | 1, 2, 43, 86 | 4 | 132 | 46 | deficient, composite |
87 | 1, 3, 29, 87 | 4 | 120 | 33 | deficient, composite |
88 | 1, 2, 4, 8, 11, 22, 44, 88 | 8 | 180 | 92 | abundant, composite |
89 | 1, 89 | 2 | 90 | 1 | deficient, prime |
90 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 | 12 | 234 | 144 | abundant, highly abundant, composite |
91 | 1, 7, 13, 91 | 4 | 112 | 21 | deficient, composite |
92 | 1, 2, 4, 23, 46, 92 | 6 | 168 | 76 | deficient, composite |
93 | 1, 3, 31, 93 | 4 | 128 | 35 | deficient, composite |
94 | 1, 2, 47, 94 | 4 | 144 | 50 | deficient, composite |
95 | 1, 5, 19, 95 | 4 | 120 | 25 | deficient, composite |
96 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 | 12 | 252 | 156 | abundant, highly abundant, composite |
97 | 1, 97 | 2 | 98 | 1 | deficient, prime |
98 | 1, 2, 7, 14, 49, 98 | 6 | 171 | 73 | deficient, composite |
99 | 1, 3, 9, 11, 33, 99 | 6 | 156 | 57 | deficient, composite |
100 | 1, 2, 4, 5, 10, 20, 25, 50, 100 | 9 | 217 | 117 | abundant, composite |
Read more about this topic: Table Of Divisors
Famous quotes containing the word numbers:
“... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.”
—Mary Barnett Gilson (1877?)