Divisors of The Numbers 1 To 100
n | Divisors | d(n) | σ(n) | s(n) | Notes |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | deficient, highly abundant, superabundant, highly composite |
2 | 1, 2 | 2 | 3 | 1 | deficient, highly abundant, superabundant, colossally abundant, prime, highly composite, superior highly composite |
3 | 1, 3 | 2 | 4 | 1 | deficient, highly abundant, prime |
4 | 1, 2, 4 | 3 | 7 | 3 | deficient, highly abundant, superabundant, composite, highly composite |
5 | 1, 5 | 2 | 6 | 1 | deficient, prime |
6 | 1, 2, 3, 6 | 4 | 12 | 6 | perfect, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
7 | 1, 7 | 2 | 8 | 1 | deficient, prime |
8 | 1, 2, 4, 8 | 4 | 15 | 7 | deficient, highly abundant, composite |
9 | 1, 3, 9 | 3 | 13 | 4 | deficient, composite |
10 | 1, 2, 5, 10 | 4 | 18 | 8 | deficient, highly abundant, composite |
11 | 1, 11 | 2 | 12 | 1 | deficient, prime |
12 | 1, 2, 3, 4, 6, 12 | 6 | 28 | 16 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
13 | 1, 13 | 2 | 14 | 1 | deficient, prime |
14 | 1, 2, 7, 14 | 4 | 24 | 10 | deficient, composite |
15 | 1, 3, 5, 15 | 4 | 24 | 9 | deficient, composite |
16 | 1, 2, 4, 8, 16 | 5 | 31 | 15 | deficient, highly abundant, composite |
17 | 1, 17 | 2 | 18 | 1 | deficient, prime |
18 | 1, 2, 3, 6, 9, 18 | 6 | 39 | 21 | abundant, highly abundant, composite |
19 | 1, 19 | 2 | 20 | 1 | deficient, prime |
20 | 1, 2, 4, 5, 10, 20 | 6 | 42 | 22 | abundant, highly abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
21 | 1, 3, 7, 21 | 4 | 32 | 11 | deficient, composite |
22 | 1, 2, 11, 22 | 4 | 36 | 14 | deficient, composite |
23 | 1, 23 | 2 | 24 | 1 | deficient, prime |
24 | 1, 2, 3, 4, 6, 8, 12, 24 | 8 | 60 | 36 | abundant, highly abundant, superabundant, composite, highly composite |
25 | 1, 5, 25 | 3 | 31 | 6 | deficient, composite |
26 | 1, 2, 13, 26 | 4 | 42 | 16 | deficient, composite |
27 | 1, 3, 9, 27 | 4 | 40 | 13 | deficient, composite |
28 | 1, 2, 4, 7, 14, 28 | 6 | 56 | 28 | perfect, composite |
29 | 1, 29 | 2 | 30 | 1 | deficient, prime |
30 | 1, 2, 3, 5, 6, 10, 15, 30 | 8 | 72 | 42 | abundant, highly abundant, composite |
31 | 1, 31 | 2 | 32 | 1 | deficient, prime |
32 | 1, 2, 4, 8, 16, 32 | 6 | 63 | 31 | deficient, composite |
33 | 1, 3, 11, 33 | 4 | 48 | 15 | deficient, composite |
34 | 1, 2, 17, 34 | 4 | 54 | 20 | deficient, composite |
35 | 1, 5, 7, 35 | 4 | 48 | 13 | deficient, composite |
36 | 1, 2, 3, 4, 6, 9, 12, 18, 36 | 9 | 91 | 55 | abundant, highly abundant, superabundant, composite, highly composite |
37 | 1, 37 | 2 | 38 | 1 | deficient, prime |
38 | 1, 2, 19, 38 | 4 | 60 | 22 | deficient, composite |
39 | 1, 3, 13, 39 | 4 | 56 | 17 | deficient, composite |
40 | 1, 2, 4, 5, 8, 10, 20, 40 | 8 | 90 | 50 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
41 | 1, 41 | 2 | 42 | 1 | deficient, prime |
42 | 1, 2, 3, 6, 7, 14, 21, 42 | 8 | 96 | 54 | abundant, highly abundant, composite |
43 | 1, 43 | 2 | 44 | 1 | deficient, prime |
44 | 1, 2, 4, 11, 22, 44 | 6 | 84 | 40 | deficient, composite |
45 | 1, 3, 5, 9, 15, 45 | 6 | 78 | 33 | deficient, composite |
46 | 1, 2, 23, 46 | 4 | 72 | 26 | deficient, composite |
47 | 1, 47 | 2 | 48 | 1 | deficient, prime |
48 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 | 10 | 124 | 76 | abundant, highly abundant, superabundant, composite, highly composite |
49 | 1, 7, 49 | 3 | 57 | 8 | deficient, composite |
50 | 1, 2, 5, 10, 25, 50 | 6 | 93 | 43 | deficient, composite |
51 | 1, 3, 17, 51 | 4 | 72 | 21 | deficient, composite |
52 | 1, 2, 4, 13, 26, 52 | 6 | 98 | 46 | deficient, composite |
53 | 1, 53 | 2 | 54 | 1 | deficient, prime |
54 | 1, 2, 3, 6, 9, 18, 27, 54 | 8 | 120 | 66 | abundant, composite |
55 | 1, 5, 11, 55 | 4 | 72 | 17 | deficient, composite |
56 | 1, 2, 4, 7, 8, 14, 28, 56 | 8 | 120 | 64 | abundant, composite |
57 | 1, 3, 19, 57 | 4 | 80 | 23 | deficient, composite |
58 | 1, 2, 29, 58 | 4 | 90 | 32 | deficient, composite |
59 | 1, 59 | 2 | 60 | 1 | deficient, prime |
60 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 | 12 | 168 | 108 | abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
61 | 1, 61 | 2 | 62 | 1 | deficient, prime |
62 | 1, 2, 31, 62 | 4 | 96 | 34 | deficient, composite |
63 | 1, 3, 7, 9, 21, 63 | 6 | 104 | 41 | deficient, composite |
64 | 1, 2, 4, 8, 16, 32, 64 | 7 | 127 | 63 | deficient, composite |
65 | 1, 5, 13, 65 | 4 | 84 | 19 | deficient, composite |
66 | 1, 2, 3, 6, 11, 22, 33, 66 | 8 | 144 | 78 | abundant, composite |
67 | 1, 67 | 2 | 68 | 1 | deficient, prime |
68 | 1, 2, 4, 17, 34, 68 | 6 | 126 | 58 | deficient, composite |
69 | 1, 3, 23, 69 | 4 | 96 | 27 | deficient, composite |
70 | 1, 2, 5, 7, 10, 14, 35, 70 | 8 | 144 | 74 | abundant, composite, weird |
71 | 1, 71 | 2 | 72 | 1 | deficient, prime |
72 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 | 12 | 195 | 123 | abundant, highly abundant, composite |
73 | 1, 73 | 2 | 74 | 1 | deficient, prime |
74 | 1, 2, 37, 74 | 4 | 114 | 40 | deficient, composite |
75 | 1, 3, 5, 15, 25, 75 | 6 | 124 | 49 | deficient, composite |
76 | 1, 2, 4, 19, 38, 76 | 6 | 140 | 64 | deficient, composite |
77 | 1, 7, 11, 77 | 4 | 96 | 19 | deficient, composite |
78 | 1, 2, 3, 6, 13, 26, 39, 78 | 8 | 168 | 90 | abundant, composite |
79 | 1, 79 | 2 | 80 | 1 | deficient, prime |
80 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 | 10 | 186 | 106 | abundant, composite |
n | Divisors | d(n) | σ(n) | s(n) | Notes |
81 | 1, 3, 9, 27, 81 | 5 | 121 | 40 | deficient, composite |
82 | 1, 2, 41, 82 | 4 | 126 | 44 | deficient, composite |
83 | 1, 83 | 2 | 84 | 1 | deficient, prime |
84 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 | 12 | 224 | 140 | abundant, highly abundant, composite |
85 | 1, 5, 17, 85 | 4 | 108 | 23 | deficient, composite |
86 | 1, 2, 43, 86 | 4 | 132 | 46 | deficient, composite |
87 | 1, 3, 29, 87 | 4 | 120 | 33 | deficient, composite |
88 | 1, 2, 4, 8, 11, 22, 44, 88 | 8 | 180 | 92 | abundant, composite |
89 | 1, 89 | 2 | 90 | 1 | deficient, prime |
90 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 | 12 | 234 | 144 | abundant, highly abundant, composite |
91 | 1, 7, 13, 91 | 4 | 112 | 21 | deficient, composite |
92 | 1, 2, 4, 23, 46, 92 | 6 | 168 | 76 | deficient, composite |
93 | 1, 3, 31, 93 | 4 | 128 | 35 | deficient, composite |
94 | 1, 2, 47, 94 | 4 | 144 | 50 | deficient, composite |
95 | 1, 5, 19, 95 | 4 | 120 | 25 | deficient, composite |
96 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 | 12 | 252 | 156 | abundant, highly abundant, composite |
97 | 1, 97 | 2 | 98 | 1 | deficient, prime |
98 | 1, 2, 7, 14, 49, 98 | 6 | 171 | 73 | deficient, composite |
99 | 1, 3, 9, 11, 33, 99 | 6 | 156 | 57 | deficient, composite |
100 | 1, 2, 4, 5, 10, 20, 25, 50, 100 | 9 | 217 | 117 | abundant, composite |
Read more about this topic: Table Of Divisors
Famous quotes containing the word numbers:
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)