Synchrotron Light Source - Synchrotron Radiation From Accelerators

Synchrotron Radiation From Accelerators

Synchrotron radiation may occur in accelerators either as a nuisance, causing undesired energy loss in particle physics contexts, or as a deliberately produced radiation source for numerous laboratory applications. Electrons are accelerated to high speeds in several stages to achieve a final energy that is typically in the gigaelectronvolt range. The electrons are forced to travel in a closed path by strong magnetic fields. This is similar to a radio antenna, but with the difference that the relativistic speed changes the observed frequency due to the Doppler effect by a factor . Relativistic Lorentz contraction bumps the frequency by another factor of, thus multiplying the gigahertz frequency of the resonant cavity that accelerates the electrons into the X-ray range. Another dramatic effect of relativity is that the radiation pattern is distorted from the isotropic dipole pattern expected from non-relativistic theory into an extremely forward-pointing cone of radiation. This makes synchrotron radiation sources the brightest known sources of X-rays. The planar acceleration geometry makes the radiation linearly polarized when observed in the orbital plane, and circularly polarized when observed at a small angle to that plane.

The advantages of using synchrotron radiation for spectroscopy and diffraction have been realized by an ever-growing scientific community, beginning in the 1960s and 1970s. In the beginning, accelerators were built for particle physics, and synchrotron radiation was used in "parasitic mode" when bending magnet radiation had to be extracted by drilling extra holes in the beam pipes. The first storage ring commissioned as a synchrotron light source was Tantalus, at the Synchrotron Radiation Center, first operational in 1968. As accelerator synchrotron radiation became more intense and its applications more promising, devices that enhanced the intensity of synchrotron radiation were built into existing rings. Third-generation synchrotron radiation sources were conceived and optimized from the outset to produce bright X-rays. Fourth-generation sources that will include different concepts for producing ultrabright, pulsed time-structured X-rays for extremely demanding and also probably yet-to-be-conceived experiments are under consideration.

Bending electromagnets in the accelerators were first used to generate the radiation; but to generate stronger radiation, other specialized devices, called insertion devices, are sometimes employed. Current third-generation synchrotron radiation sources are typically heavily based upon these insertion devices, when straight sections in the storage ring are used for inserting periodic magnetic structures (composed of many magnets that have a special repeating row of N and S poles) that force the electrons into a sinusoidal path or helical path. Thus, instead of a single bend, many tens or hundreds of "wiggles" at precisely calculated positions add up or multiply the total intensity that is seen at the end of the straight section. These devices are called wigglers or undulators. The main difference between an undulator and a wiggler is the intensity of their magnetic field and the amplitude of the deviation from the straight line path of the electrons.

There are openings in the storage ring to let the radiation exit and follow a beam line into the experimenters' vacuum chamber. A great number of such beamlines can emerge from modern third-generation synchrotron radiation sources.

Read more about this topic:  Synchrotron Light Source

Famous quotes containing the word radiation:

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)