Synchronous Frame - Synchronous Frame

Synchronous Frame

As concluded from eq. 17, the condition that allows clock synchronization in different space points is that metric tensor components g are zeros. If, in addition, g00 = 1, then the time coordinate x0 = t is the proper time in each space point (with c = 1). A reference frame that satisfies the conditions

(eq. 18)

is called synchronous frame. The interval element in this system is given by the expression

(eq. 19)

with the space metric tensor components identical (with opposite sign) to the components gαβ:

(eq. 20)

In synchronous frame time, lines are geodesics in the four-dimensional spacetime. These lines are normal to the hypersurfaces t = const. Indeed, the 4-vector normal to this hypersurface ni = ∂t/∂xi has covariant components nα = 0, n0 = 1. The respective contravariant components at conditions eq. 18 are again nα = 0, n0 = 1, that is, coincide with the components of the 4-vector u i tangential to the time lines.

Conversely, these properties can be used to construct synchronous frame in any spacetime. To this end, choose some time-like hypersurface as an origin, such that has in every point a normal along the time line (lies inside the light cone with an apex in that point); all interval elements on this hypersurface are space-like. Then draw a family of geodesics normal to this hypersurface. Choose these lines as time coordinate lines and define the time coordinate t as the length s of the geodesic measured with a beginning at the hypersurface; the result is a synchronous frame.

Such a construct, and hence, choice of synchronous frame, is always possible. Moreover, such choice is not unique. Metric of type eq. 19 allows any transformation of space coordinates that does not depend on time and, additionally, a transformation brought about by the arbitrary choice of hypersurface used for this geometric construct.

An analytic transformation to synchronous frame can be done with the use of the Hamilton–Jacobi equation. The principle of this method is based on the fact that particle trajectories in gravitational fields are geodesics.

The Hamilton–Jacobi equation for a particle (with a unit mass) in a gravitational field is.

Read more about this topic:  Synchronous Frame

Famous quotes containing the word frame:

    In this choice of inheritance we have given to our frame of polity the image of a relation in blood; binding up the constitution of our country with our dearest domestic ties; adopting our fundamental laws into the bosom of our family affections; keeping inseparable and cherishing with the warmth of all their combined and mutually reflected charities, our state, our hearths, our sepulchres, and our altars.
    Edmund Burke (1729–1797)