Synchronization of Chaos - Phase Synchronization

Phase Synchronization

Phase synchronization occurs when the coupled chaotic oscillators keep their phase difference bounded while their amplitudes remain uncorrelated This phenomenon occurs even if the oscillators are not identical. Observation of phase synchronization requires a previous definition of the phase of a chaotic oscillator. In many practical cases, it is possible to find a plane in phase space in which the projection of the trajectories of the oscillator follows a rotation around a well-defined center. If this is the case, the phase is defined by the angle, φ(t), described by the segment joining the center of rotation and the projection of the trajectory point onto the plane. In other cases it is still possible to define a phase by means of techniques provided by the theory of signal processing, such as the Hilbert transform. In any case, if φ1(t) and φ2(t) denote the phases of the two coupled oscillators, synchronization of the phase is given by the relation nφ1(t)=mφ2(t) with m and n whole numbers.

Read more about this topic:  Synchronization Of Chaos

Famous quotes containing the word phase:

    It no longer makes sense to speak of “feeding problems” or “sleep problems” or “negative behavior” is if they were distinct categories, but to speak of “problems of development” and to search for the meaning of feeding and sleep disturbances or behavior disorders in the developmental phase which has produced them.
    Selma H. Fraiberg (20th century)