Symplectic Vector Space - Volume Form

Volume Form

Let ω be a form on a n-dimensional real vector space V, ω ∈ Λ2(V). Then ω is non-degenerate if and only if n is even, and ωn/2 = ω ∧ ... ∧ ω is a volume form. A volume form on a n-dimensional vector space V is a non-zero multiple of the n-form e1∗ ∧ ... ∧ en∗ where e1, e2, ..., en is a basis of V.

For the standard basis defined in the previous section, we have

By reordering, one can write

Authors variously define ωn or (−1)n/2ωn as the standard volume form. An occasional factor of n! may also appear, depending on whether the definition of the alternating product contains a factor of n! or not. The volume form defines an orientation on the symplectic vector space (V, ω).

Read more about this topic:  Symplectic Vector Space

Famous quotes containing the words volume and/or form:

    So it is with books, for the most part: they work no redemption on us. The bookseller might certainly know that his customers are in no respect better for the purchase and consumption of his wares. The volume is dear at a dollar, and after to reading to weariness the lettered backs, we leave the shop with a sigh, and learn, as I did without surprise of a surly bank director, that in bank parlors they estimate all stocks of this kind as rubbish.
    Ralph Waldo Emerson (1803–1882)

    Women stand related to beautiful nature around us, and the enamoured youth mixes their form with moon and stars, with woods and waters, and the pomp of summer. They heal us of awkwardness by their words and looks. We observe their intellectual influence on the most serious student. They refine and clear his mind: teach him to put a pleasing method into what is dry and difficult.
    Ralph Waldo Emerson (1803–1882)