Properties
Every symplectic matrix is invertible with the inverse matrix given by
Furthermore, the product of two symplectic matrices is, again, a symplectic matrix. This gives the set of all symplectic matrices the structure of a group. There exists a natural manifold structure on this group which makes it into a (real or complex) Lie group called the symplectic group. The symplectic group has dimension n(2n + 1).
It follows easily from the definition that the determinant of any symplectic matrix is ±1. Actually, it turns out that the determinant is always +1. One way to see this is through the use of the Pfaffian and the identity
Since and we have that det(M) = 1.
Suppose Ω is given in the standard form and let M be a 2n×2n block matrix given by
where A, B, C, D are n×n matrices. The condition for M to be symplectic is equivalent to the conditions
When n = 1 these conditions reduce to the single condition det(M) = 1. Thus a 2×2 matrix is symplectic iff it has unit determinant.
Read more about this topic: Symplectic Matrix
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)