Definition
Let V be a vector space and
a tensor of order r. Then T is a symmetric tensor if
for the braiding maps associated to every permutation σ on the symbols {1,2,...,r} (or equivalently for every transposition on these symbols).
Given a basis {ei} of V, any symmetric tensor T of rank r can be written as
for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say
for every permutation σ.
The space of all symmetric tensors of rank r defined on V is often denoted by Sr(V) or Symr(V). It is itself a vector space, and if V has dimension N then the dimension of Symr(V) is the binomial coefficient
Read more about this topic: Symmetric Tensor
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)