Symmetric Tensor - Definition

Definition

Let V be a vector space and

a tensor of order r. Then T is a symmetric tensor if

for the braiding maps associated to every permutation σ on the symbols {1,2,...,r} (or equivalently for every transposition on these symbols).

Given a basis {ei} of V, any symmetric tensor T of rank r can be written as

for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say

for every permutation σ.

The space of all symmetric tensors of rank r defined on V is often denoted by Sr(V) or Symr(V). It is itself a vector space, and if V has dimension N then the dimension of Symr(V) is the binomial coefficient

Read more about this topic:  Symmetric Tensor

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)