General Definition
Let G be a connected Lie group. Then a symmetric space for G is a homogeneous space G/H where the stabilizer H of a typical point is an open subgroup of the fixed point set of an involution σ of G. Thus σ is an automorphism of G with σ2 = idG and H is an open subgroup of the set
Because H is open, it is a union of components of Gσ (including, of course, the identity component).
As an automorphism of G, σ fixes the identity element, and hence, by differentiating at the identity, it induces an automorphism of the Lie algebra of G, also denoted by σ, whose square is the identity. It follows that the eigenvalues of σ are ±1. The +1 eigenspace is the Lie algebra of H (since this is the Lie algebra of Gσ), and the -1 eigenspace will be denoted . Since σ is an automorphism of, this gives a direct sum decomposition
with
The first condition is automatic for any homogeneous space: it just says the infinitesimal stabilizer is a Lie subalgebra of . The second condition means that is an -invariant complement to in . Thus any symmetric space is a reductive homogeneous space, but there are many reductive homogeneous spaces which are not symmetric spaces. The key feature of symmetric spaces is the third condition that brackets into .
Conversely, given any Lie algebra with a direct sum decomposition satisfying these three conditions, the linear map σ, equal to the identity on and minus the identity on, is an involutive automorphism.
Read more about this topic: Symmetric Space
Famous quotes containing the words general and/or definition:
“Everyone confesses in the abstract that exertion which brings out all the powers of body and mind is the best thing for us all; but practically most people do all they can to get rid of it, and as a general rule nobody does much more than circumstances drive them to do.”
—Harriet Beecher Stowe (18111896)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)