Symmetric Relation
In mathematics, a binary relation R over a set X is symmetric if it holds for all a and b in X that if a is related to b then b is related to a.
In mathematical notation, this is:
Note: symmetry is not the exact opposite of antisymmetry (aRb and bRa implies b = a). There are relations which are both symmetric and antisymmetric (equality and its subrelations, including, vacuously, the empty relation), there are relations which are neither symmetric nor antisymmetric (the relation "divides" on the set ℤ; the relation "preys on" in biological sciences), there are relations which are symmetric and not antisymmetric (congruence modulo n), and there are relations which are not symmetric but are antisymmetric ("is less than or equal to").
A symmetric relation that is also transitive and reflexive is an equivalence relation.
Read more about Symmetric Relation: Graph-theoretic Interpretation, Examples
Famous quotes containing the word relation:
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)