Symmetrizable Matrix
An n-by-n matrix A is said to be symmetrizable if there exist an invertible diagonal matrix D and symmetric matrix S such that A = DS. The transpose of a symmetrizable matrix is symmetrizable, for (DS)T = D−T(DTSD). A matrix A = (aij) is symmetrizable if and only if the following conditions are met:
Read more about this topic: Symmetric Matrix
Famous quotes containing the word matrix:
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)