Symmetric Algebra - Construction

Construction

It turns out that S(V) is in effect the same as the polynomial ring, over K, in indeterminates that are basis vectors for V. Therefore this construction only brings something extra when the "naturality" of looking at polynomials this way has some advantage.

It is possible to use the tensor algebra T(V) to describe the symmetric algebra S(V). In fact we pass from the tensor algebra to the symmetric algebra by forcing it to be commutative; if elements of V commute, then tensors in them must, so that we construct the symmetric algebra from the tensor algebra by taking the quotient algebra of T(V) by the ideal generated by all differences of products

for v and w in V.

Read more about this topic:  Symmetric Algebra

Famous quotes containing the word construction:

    There’s no art
    To find the mind’s construction in the face:
    He was a gentleman on whom I built
    An absolute trust.
    William Shakespeare (1564–1616)

    There’s no art
    To find the mind’s construction in the face.
    William Shakespeare (1564–1616)

    When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.
    Edmund Burke (1729–1797)