Switched-mode Power Supply - Explanation

Explanation

A linear regulator provides the desired output voltage by dissipating excess power in ohmic losses (e.g., in a resistor or in the collector–emitter region of a pass transistor in its active mode). A linear regulator regulates either output voltage or current by dissipating the excess electric power in the form of heat, and hence its maximum power efficiency is voltage-out/voltage-in since the volt difference is wasted. In contrast, a switched-mode power supply regulates either output voltage or current by switching ideal storage elements, like inductors and capacitors, into and out of different electrical configurations. Ideal switching elements (e.g., transistors operated outside of their active mode) have no resistance when "closed" and carry no current when "open", and so the converters can theoretically operate with 100% efficiency (i.e., all input power is delivered to the load; no power is wasted as dissipated heat).

For example, if a DC source, an inductor, a switch, and the corresponding electrical ground are placed in series and the switch is driven by a square wave, the peak-to-peak voltage of the waveform measured across the switch can exceed the input voltage from the DC source. This is because the inductor responds to changes in current by inducing its own voltage to counter the change in current, and this voltage adds to the source voltage while the switch is open. If a diode-and-capacitor combination is placed in parallel to the switch, the peak voltage can be stored in the capacitor, and the capacitor can be used as a DC source with an output voltage greater than the DC voltage driving the circuit. This boost converter acts like a step-up transformer for DC signals. A buck–boost converter works in a similar manner, but yields an output voltage which is opposite in polarity to the input voltage. Other buck circuits exist to boost the average output current with a reduction of voltage.

In an SMPS, the output current flow depends on the input power signal, the storage elements and circuit topologies used, and also on the pattern used (e.g., pulse-width modulation with an adjustable duty cycle) to drive the switching elements. Typically, the spectral density of these switching waveforms has energy concentrated at relatively high frequencies. As such, switching transients, like ripple, introduced onto the output waveforms can be filtered with small LC filters.

Read more about this topic:  Switched-mode Power Supply

Famous quotes containing the word explanation:

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)

    There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.
    W. Somerset Maugham (1874–1965)

    What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesn’t mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.
    Laurence Steinberg (20th century)