Formulation
Given a non-empty totally ordered set R with the following four properties:
- R does not have a least nor a greatest element;
- the order on R is dense (between any two elements there is another);
- the order on R is complete, in the sense that every non-empty bounded subset has a supremum and an infimum;
- every collection of mutually disjoint non-empty open intervals in R is countable (this is the countable chain condition, ccc).
Is R necessarily order-isomorphic to the real line R?
If the requirement for the countable chain condition is replaced with the requirement that R contains a countable dense subset (i.e., R is a separable space) then the answer is indeed yes: any such set R is necessarily isomorphic to R.
Read more about this topic: Suslin's Problem
Famous quotes containing the word formulation:
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)
“Art is an experience, not the formulation of a problem.”
—Lindsay Anderson (b. 1923)
“In necessary things, unity; in disputed things, liberty; in all things, charity.”
—Variously Ascribed.
The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)