Surgery Theory - Application To Classification of Manifolds

Application To Classification of Manifolds

The origin and main application of surgery theory lies in the classification of manifolds of dimension greater than four. Loosely, the organizing questions of surgery theory are:

  • Is X a manifold?
  • Is f a diffeomorphism?

More formally, one must ask whether up to homotopy:

  • Does a space X have the homotopy type of a smooth manifold of the same dimension?
  • Is a homotopy equivalence f: MN between two smooth manifolds homotopic to a diffeomorphism?

It turns out that the second ("uniqueness") question is a relative version of a question of the first ("existence") type; thus both questions can be treated with the same methods.

Note that surgery theory does not give a complete set of invariants to these questions. Instead, it is obstruction-theoretic: there is a primary obstruction, and a secondary obstruction called the surgery obstruction which is only defined if the primary obstruction vanishes, and which depends on the choice made in verifying that the primary obstruction vanishes.

Read more about this topic:  Surgery Theory

Famous quotes containing the words application to and/or application:

    “Five o’clock tea” is a phrase our “rude forefathers,” even of the last generation, would scarcely have understood, so completely is it a thing of to-day; and yet, so rapid is the March of the Mind, it has already risen into a national institution, and rivals, in its universal application to all ranks and ages, and as a specific for “all the ills that flesh is heir to,” the glorious Magna Charta.
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)