Measuring The Surface Energy of A Solid
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy density). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γδA, is needed (where γ is the surface energy density of the liquid). However, such a method cannot be used to measure the surface energy of a solid because stretching of a solid membrane induces elastic energy in the bulk in addition to increasing the surface energy.
The surface energy of a solid is usually measured at high temperatures. At such temperatures the solid creeps and even though the surface area changes, the volume remains approximately constant. If γ is the surface energy density of a cylindrical rod of radius and length at high temperature and a constant uniaxial tension, then at equilibrium, the variation of the total Gibbs free energy vanishes and we have
where is the Gibbs free energy and is the surface area of the rod:
Also, since the volume of the rod remains constant, the variation of the volume is zero, i.e.,
Therefore, the surface energy density can be expressed as
The surface energy density of the solid can be computed by measuring, and at equilibrium.
This method is valid only if the solid is isotropic, meaning the surface energy is the same for all crystallographic orientations. While this is only strictly true for amorphous solids (glass) and liquids, isotropy is a good approximation for many other materials. In particular, if the sample is polygranular (most metals) or made by powder sintering (most ceramics) this is a good approximation.
In the case of single-crystal materials, such as natural gemstones, anisotropy in the surface energy leads to faceting. The shape of the crystal (assuming equilibrium growth conditions) is related to the surface energy by the Wulff construction. The surface energy of the facets can thus be found to within a scaling constant by measuring the relative sizes of the facets.
Read more about this topic: Surface Energy
Famous quotes containing the words measuring the, measuring, surface, energy and/or solid:
“... there is no way of measuring the damage to a society when a whole texture of humanity is kept from realizing its own power, when the woman architect who might have reinvented our cities sits barely literate in a semilegal sweatshop on the Texas- Mexican border, when women who should be founding colleges must work their entire lives as domestics ...”
—Adrienne Rich (b. 1929)
“Man always made, and still makes, grotesque blunders in selecting and measuring forces, taken at random from the heap, but he never made a mistake in the value he set on the whole, which he symbolized as unity and worshipped as God. To this day, his attitude towards it has never changed, though science can no longer give to force a name.”
—Henry Brooks Adams (18381918)
“I have passed down the river before sunrise on a summer morning, between fields of lilies still shut in sleep; and when, at length, the flakes of sunlight from over the bank fell on the surface of the water, whole fields of white blossoms seemed to flash open before me, as I floated along, like the unfolding of a banner, so sensible is this flower to the influence of the suns rays.”
—Henry David Thoreau (18171862)
“His eloquence was of every kind, and he excelled in the argumentative as well as in the declamatory way. But his invectives were terrible, and uttered with such energy of diction, and stern dignity of action and countenance, that he intimidated those who were the most willing and the best able to encounter him. Their arms fell out of their hands, and they shrunk under the ascendant which his genius gained over theirs.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Children cant make their own rules and no child is happy without them. The great need of the young is for authority that protects them against the consequences of their own primitive passions and their lack of experience, that provides with guides for everyday behavior and that builds some solid ground they can stand on for the future.”
—Leontine Young (20th century)