Definition of Surface Area
While areas of many simple surfaces have been known since antiquity, a rigorous mathematical definition of the area requires a lot of care. Surface area is an assignment
of a positive real number to a certain class of surfaces that satisfies several natural requirements. The most fundamental property of the surface area is its additivity: the area of the whole is the sum of the areas of the parts. More rigorously, if a surface S is a union of finitely many pieces S1, …, Sr which do not overlap except at their boundaries then
Surface areas of flat polygonal shapes must agree with their geometrically defined area. Since surface area is a geometric notion, areas of congruent surfaces must be the same and area must depend only on the shape of the surface, but not on its position and orientation in space. This means that surface area is invariant under the group of Euclidean motions. These properties uniquely characterize surface area for a wide class of geometric surfaces called piecewise smooth. Such surfaces consist of finitely many pieces that can be represented in the parametric form
with continuously differentiable function The area of an individual piece is defined by the formula
Thus the area of SD is obtained by integrating the length of the normal vector to the surface over the appropriate region D in the parametric uv plane. The area of the whole surface is then obtained by adding together the areas of the pieces, using additivity of surface area. The main formula can be specialized to different classes of surfaces, giving, in particular, formulas for areas of graphs z = f(x,y) and surfaces of revolution.
One of the subtleties of surface area, as compared to arc length of curves, is that surface area cannot be defined simply as the limit of areas of polyhedral shapes approximating a given smooth surface. It was demonstrated by Hermann Schwarz that already for the cylinder, different choices of approximating flat surfaces can lead to different limiting values of the area (Known as Schwarz's paradox.) .
Various approaches to general definition of surface area were developed in the late nineteenth and the early twentieth century by Henri Lebesgue and Hermann Minkowski. While for piecewise smooth surfaces there is a unique natural notion of surface area, if a surface is very irregular, or rough, then it may not be possible to assign any area at all to it. A typical example is given by a surface with spikes spread throughout in a dense fashion. Many surfaces of this type occur in the theory of fractals. Extensions of the notion of area which partially fulfill its function and may be defined even for very badly irregular surfaces are studied in the geometric measure theory. A specific example of such an extension is the Minkowski content of the surface.
Read more about this topic: Surface Area
Famous quotes containing the words definition of, definition, surface and/or area:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“These wonderful things
Were planted on the surface of a round mind that was to become our present time.”
—John Ashbery (b. 1927)
“If you meet a sectary, or a hostile partisan, never recognize the dividing lines; but meet on what common ground remains,if only that the sun shines, and the rain rains for both; the area will widen very fast, and ere you know it the boundary mountains, on which the eye had fastened, have melted into air.”
—Ralph Waldo Emerson (18031882)