Sumudu Transform - Formal Definition

Formal Definition

The Sumudu transform of a function f(t), defined for all real numbers t ≥ 0, is the function Fs(u), defined by:

 S\{f(t)\} = F_s(u)
= \int_0^\infty (1/u)e^{-t/u}f(t)\,dt.\qquad(1)

Watugala first advocated the transform as an alternative to the standard Laplace transform, and gave it the name Sumudu transform. It was early adopted by Weerakoon, and later by others.

Read more about this topic:  Sumudu Transform

Famous quotes containing the words formal and/or definition:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)