Summation By Parts - Newton Series

Newton Series

The formula is sometimes given in one of these - slightly different - forms

\begin{align}\sum_{k=0}^n f_k g_k &= f_0 \sum_{k=0}^n g_k+ \sum_{j=0}^{n-1} (f_{j+1}-f_j) \sum_{k=j+1}^n g_k=\\
&= f_n \sum_{k=0}^n g_k - \sum_{j=0}^{n-1} \left( f_{j+1}- f_j\right) \sum_{k=0}^j g_k, \end{align}

which represent a special cases of the more general rule

\begin{align}\sum_{k=0}^n f_k g_k &= \sum_{i=0}^{M-1} f_0^{(i)} G_{i}^{(i+1)}+ \sum_{j=0}^{n-M} f^{(M)}_{j} G_{j+M}^{(M)}=\\
&= \sum_{i=0}^{M-1} \left( -1 \right)^i f_{n-i}^{(i)} \tilde{G}_{n-i}^{(i+1)}+ \left( -1 \right) ^{M} \sum_{j=0}^{n-M} f_j^{(M)} \tilde{G}_j^{(M)};\end{align}

both result from iterated application of the initial formula. The auxiliary quantities are Newton series:

and

A remarkable, particular result is the noteworthy identity

Here, is the binomial coefficient.

Read more about this topic:  Summation By Parts

Famous quotes containing the words newton and/or series:

    I frame no hypotheses; for whatever is not deduced from the phenomena is to be called a hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy.
    —Isaac Newton (1642–1727)

    As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.
    Sir Arthur Conan Doyle (1859–1930)