Summation By Parts - Newton Series

Newton Series

The formula is sometimes given in one of these - slightly different - forms

\begin{align}\sum_{k=0}^n f_k g_k &= f_0 \sum_{k=0}^n g_k+ \sum_{j=0}^{n-1} (f_{j+1}-f_j) \sum_{k=j+1}^n g_k=\\
&= f_n \sum_{k=0}^n g_k - \sum_{j=0}^{n-1} \left( f_{j+1}- f_j\right) \sum_{k=0}^j g_k, \end{align}

which represent a special cases of the more general rule

\begin{align}\sum_{k=0}^n f_k g_k &= \sum_{i=0}^{M-1} f_0^{(i)} G_{i}^{(i+1)}+ \sum_{j=0}^{n-M} f^{(M)}_{j} G_{j+M}^{(M)}=\\
&= \sum_{i=0}^{M-1} \left( -1 \right)^i f_{n-i}^{(i)} \tilde{G}_{n-i}^{(i+1)}+ \left( -1 \right) ^{M} \sum_{j=0}^{n-M} f_j^{(M)} \tilde{G}_j^{(M)};\end{align}

both result from iterated application of the initial formula. The auxiliary quantities are Newton series:

and

A remarkable, particular result is the noteworthy identity

Here, is the binomial coefficient.

Read more about this topic:  Summation By Parts

Famous quotes containing the words newton and/or series:

    Where the statue stood
    Of Newton with his prism and silent face,
    The marble index of a mind for ever
    Voyaging through strange seas of thought, alone.
    William Wordsworth (1770–1850)

    In the order of literature, as in others, there is no act that is not the coronation of an infinite series of causes and the source of an infinite series of effects.
    Jorge Luis Borges (1899–1986)