Summation By Parts - Newton Series

Newton Series

The formula is sometimes given in one of these - slightly different - forms

\begin{align}\sum_{k=0}^n f_k g_k &= f_0 \sum_{k=0}^n g_k+ \sum_{j=0}^{n-1} (f_{j+1}-f_j) \sum_{k=j+1}^n g_k=\\
&= f_n \sum_{k=0}^n g_k - \sum_{j=0}^{n-1} \left( f_{j+1}- f_j\right) \sum_{k=0}^j g_k, \end{align}

which represent a special cases of the more general rule

\begin{align}\sum_{k=0}^n f_k g_k &= \sum_{i=0}^{M-1} f_0^{(i)} G_{i}^{(i+1)}+ \sum_{j=0}^{n-M} f^{(M)}_{j} G_{j+M}^{(M)}=\\
&= \sum_{i=0}^{M-1} \left( -1 \right)^i f_{n-i}^{(i)} \tilde{G}_{n-i}^{(i+1)}+ \left( -1 \right) ^{M} \sum_{j=0}^{n-M} f_j^{(M)} \tilde{G}_j^{(M)};\end{align}

both result from iterated application of the initial formula. The auxiliary quantities are Newton series:

and

A remarkable, particular result is the noteworthy identity

Here, is the binomial coefficient.

Read more about this topic:  Summation By Parts

Famous quotes containing the words newton and/or series:

    Glorious things of thee are spoken, Zion city of our God!
    He, whose word cannot be broken, Form’d for thee his own abode:
    On the rock of ages founded, What can shake thy sure repose?
    With salvation’s walls surrounded Thou may’st smile at all thy foes.
    —John Newton (1725–1807)

    Galileo, with an operaglass, discovered a more splendid series of celestial phenomena than anyone since.
    Ralph Waldo Emerson (1803–1882)