Mathematical Definition
We will consider regions in that are well-behaved, in the sense that a region is a nonempty compact subset that is the closure of its interior.
We take a set of regions as prototiles. A placement of a prototile is a pair where is an isometry of . The image is called the placement's region. A tiling T is a set of prototile placements whose regions have pairwise disjoint interiors. We say that the tiling T is a tiling of W where W is the union of the regions of the placements in T.
A tile substitution is often loosely defined in the literature. A precise definition is as follows.
A tile substitution with respect to the prototiles P is a pair, where is a linear map, all of whose eigenvalues are larger than one in modulus, together with a substitution rule that maps each to a tiling of . The tile substitution induces a map from any tiling T of a region W to a tiling of, defined by
Note, that the prototiles can be deduced from the tile substitution. Therefore it is not necessary to include them in the tile substitution .
Every tiling of, where any finite part of it is congruent to a subset of some is called a substitution tiling (for the tile substitution ).
Read more about this topic: Substitution Tiling
Famous quotes containing the words mathematical and/or definition:
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)