Subring Test

Subring Test

In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which contains the multiplicative identity of R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of R). With the initial definition (which is used in this article), the only ideal of R that is a subring of R is R itself.

A subring of a ring (R, +, *) is a subgroup of (R, +) which contains the multiplicative identity and is closed under multiplication.

For example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z.

The ring Z and its quotients Z/nZ have no subrings (with multiplicative identity) other than the full ring.

Every ring has a unique smallest subring, isomorphic to either the integers Z or some ring Z/nZ with n a nonnegative integer (see characteristic).

The subring test states that for any ring R, a subset of R is a subring if it contains the multiplicative identity of R and is closed under subtraction and multiplication.

Read more about Subring Test:  Subring Generated By A Set, Relation To Ideals, Profile By Commutative Subrings

Famous quotes containing the word test:

    It is commonly said ... that ridicule is the best test of truth; for that it will not stick where it is not just. I deny it. A truth learned in a certain light, and attacked in certain words, by men of wit and humour, may, and often doth, become ridiculous, at least so far, that the truth is only remembered and repeated for the sake of the ridicule.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)