Decision Problem and Computational Complexity
To prove subgraph isomorphism NP-complete, it must be formulated as a decision problem. The input to the decision problem is a pair of graphs G and H. The answer to the problem is positive if H is isomorphic to a subgraph of G, and negative otherwise.
The proof of subgraph isomorphism being NP-complete is simple and based on reduction of the clique problem, an NP-complete decision problem in which the input is a single graph G and a number k, and the question is whether G contains a complete subgraph with k vertices. To translate this to a subgraph isomorphism problem, simply let H be the complete graph Kk; then the answer to the subgraph isomorphism problem for G and H is equal to the answer to the clique problem for G and k. Since the clique problem is NP-complete, this polynomial-time many-one reduction shows that subgraph isomorphism is also NP-complete.
An alternative reduction from the Hamiltonian cycle problem translates a graph G which is to be tested for Hamiltonicity into the pair of graphs G and H, where H is a cycle having the same number of vertices as G. Because the Hamiltonian cycle problem is NP-complete even for planar graphs, this shows that subgraph isomorphism remains NP-complete even in the planar case.
Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same number of vertices and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph isomorphism remains an open question.
In the context of the Aanderaa–Karp–Rosenberg conjecture on the query complexity of monotone graph properties, Gröger (1992) showed that any subgraph isomorphism problem has query complexity Ω(n3/2); that is, solving the subgraph isomorphism requires an algorithm to check the presence or absence in the input of Ω(n3/2) different edges in the graph.
Read more about this topic: Subgraph Isomorphism Problem
Famous quotes containing the words decision, problem and/or complexity:
“The impulse to perfection cannot exist where the definition of perfection is the arbitrary decision of authority. That which is born in loneliness and from the heart cannot be defended against the judgment of a committee of sycophants. The volatile essences which make literature cannot survive the clichés of a long series of story conferences.”
—Raymond Chandler (18881959)
“The thinking person has the strange characteristic to like to create a fantasy in the place of the unsolved problem, a fantasy that stays with the person even when the problem has been solved and truth made its appearance.”
—Johann Wolfgang Von Goethe (17491832)
“The price we pay for the complexity of life is too high. When you think of all the effort you have to put intelephonic, technological and relationalto alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.”
—Jean Baudrillard (b. 1929)