Subdirectly Irreducible Algebra - Examples

Examples

  • The two-element chain, as either a Boolean algebra, a Heyting algebra, a lattice, or a semilattice, is subdirectly irreducible. In fact, a distributive lattice is subdirectly irreducible if and only if it has exactly two elements.
  • Any finite chain with two or more elements, as a Heyting algebra, is subdirectly irreducible. (This is not the case for chains of three or more elements as either lattices or semilattices, which are subdirectly reducible to the two-element chain. The difference with Heyting algebras is that ab need not be comparable with a under the lattice order even when b is.)
  • Any finite cyclic group of order a power of a prime (i.e. any finite p-group) is subdirectly irreducible. (One weakness of the analogy between subdirect irreducibles and prime numbers is that the integers are subdirectly representable by any infinite family of nonisomorphic prime-power cyclic groups, e.g. just those of order a Mersenne prime assuming there are infinitely many.) In fact, an abelian group is subdirectly irreducible if and only if it is isomorphic to a finite p-group or isomorphic to a Prüfer group (an infinite but countable p-group, which is the direct limit of its finite p-subgroups).
  • A vector space is subdirectly irreducible if and only if it has dimension one.

Read more about this topic:  Subdirectly Irreducible Algebra

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)