Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain - Statement

Statement

When a vector space over a field F has a finite generating set, then one may extract from it a basis consisting of a finite number n of vectors, and the space is therefore isomorphic to Fn. The corresponding statement with the F generalized to a principal ideal domain R is no longer true, as a finitely generated module over R need not have any basis. However such a module is still isomorphic to a quotient of some module Rn with n finite (to see this it suffices to construct the morphism that sends the elements of the canonical basis Rn to the generators of the module, and take the quotient by its kernel.) By changing the choice of generating set, one can in fact describe the module as the quotient of some Rn by a particularly simple submodule, and this is the structure theorem.

The structure theorem for finitely generated modules over a principal ideal domain usually appears in the following two forms.

Read more about this topic:  Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain

Famous quotes containing the word statement:

    He has the common feeling of his profession. He enjoys a statement twice as much if it appears in fine print, and anything that turns up in a footnote ... takes on the character of divine revelation.
    Margaret Halsey (b. 1910)

    No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.
    David Jenkins (b. 1925)

    I think, therefore I am is the statement of an intellectual who underrates toothaches.
    Milan Kundera (b. 1929)