String Field Theory

String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.

The principal advantages of the formalism are that it allows the computation of off-shell amplitudes and, when a classical action is available, gives non-perturbative information that cannot be seen directly from the standard genus expansion of string scattering. In particular, following the work of Ashoke Sen, it has been useful in the study of tachyon condensation on unstable D-branes. It has also had applications to topological string theory, non-commutative geometry, and strings in low dimensions.

String field theories come in a number of varieties depending on which type of string is second quantized: Open string field theories describe the scattering of open strings, closed string field theories describe closed strings, while open-closed string field theories include both open and closed strings.

In addition, depending on the method used to fix the worldsheet diffeomorphisms and conformal transformations in the original free string theory, the resulting string field theories can be very different. Using light cone gauge, yields light-cone string field theories whereas using BRST quantization, one finds covariant string field theories. There are also hybrid string field theories, known as covariantized light-cone string field theories which use elements of both light-cone and BRST gauge-fixed string field theories.

A final form of string field theory, known as background independent open string field theory, takes a very different form; instead of second quantizing the worldsheet string theory, it second quantizes the space of two-dimensional quantum field theories.

Read more about String Field Theory:  Light-cone String Field Theory, Free Covariant String Field Theory, Witten's Cubic Open String Field Theory, Supersymmetric Covariant Open String Field Theories, Covariant Closed String Field Theory, Covariant Heterotic String Field Theory

Famous quotes containing the words string, field and/or theory:

    A culture may be conceived as a network of beliefs and purposes in which any string in the net pulls and is pulled by the others, thus perpetually changing the configuration of the whole. If the cultural element called morals takes on a new shape, we must ask what other strings have pulled it out of line. It cannot be one solitary string, nor even the strings nearby, for the network is three-dimensional at least.
    Jacques Barzun (b. 1907)

    The head must bow, and the back will have to bend,
    Wherever the darkey may go;
    A few more days, and the trouble all will end,
    In the field where the sugar-canes grow.
    A few more days for to tote the weary load,—
    No matter, ‘t will never be light;
    A few more days till we totter on the road:—
    Then my old Kentucky home, good-night!
    Stephen Collins Foster (1826–1884)

    The theory of the Communists may be summed up in the single sentence: Abolition of private property.
    Karl Marx (1818–1883)