A strictly non-palindromic number is an integer n that is not palindromic in any numeral system with a base b in the range 2 ≤ b ≤ n − 2. For example, the number six is written as 110 in base 2, 20 in base 3 and 12 in base 4, none of which is a palindrome—so 6 is strictly non-palindromic.
The sequence of strictly non-palindromic numbers (sequence A016038 in OEIS) starts:
- 1, 2, 3, 4, 6, 11, 19, 47, 53, 79, 103, 137, 139, 149, 163, 167, 179, 223, 263, 269, 283, 293, …
To test whether a number n is strictly non-palindromic, it must be verified that n is non-palindromic in all bases up to n − 2. The reasons for this upper limit are:
- any n ≥ 3 is written 11 in base n − 1, so n is palindromic in base n − 1;
- any n ≥ 2 is written 10 in base n, so any n is non-palindromic in base n;
- any n ≥ 1 is a single-digit number in any base b > n, so any n is palindromic in all such bases.
Thus it can be seen that the upper limit of n − 2 is necessary to obtain a mathematically 'interesting' definition.
For n < 4 the range of bases is empty, so these numbers are strictly non-palindromic in a trivial way.
Read more about Strictly Non-palindromic Number: Properties
Famous quotes containing the words strictly and/or number:
“Self-trust is the first secret of success, the belief that if you are here the authorities of the universe put you here, and for cause, or with some task strictly appointed you in your constitution, and so long as you work at that you are well and successful.”
—Ralph Waldo Emerson (18031882)
“I am walking over hot coals suspended over a deep pit at the bottom of which are a large number of vipers baring their fangs.”
—John Major (b. 1943)