Strict-feedback Form

Strict-feedback Form

In control theory, dynamical systems are in strict-feedback form when they can be expressed as

\begin{cases} \dot{\mathbf{x}} = f_0(\mathbf{x}) + g_0(\mathbf{x}) z_1\\
\dot{z}_1 = f_1(\mathbf{x},z_1) + g_1(\mathbf{x},z_1) z_2\\
\dot{z}_2 = f_2(\mathbf{x},z_1,z_2) + g_2(\mathbf{x},z_1,z_2) z_3\\
\dot{z}_i = f_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) + g_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) z_{i+1} \quad \text{ for } 1 \leq i < k-1\\
\dot{z}_{k-1} = f_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) + g_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) z_k\\
\dot{z}_k = f_k(\mathbf{x},z_1, z_2, \ldots, z_{k-1}, z_k) + g_k(\mathbf{x},z_1, z_2, \dots, z_{k-1}, z_k) u\end{cases}


  • with ,
  • are scalars,
  • is a scalar input to the system,
  • vanish at the origin (i.e., ),
  • are nonzero over the domain of interest (i.e., for ).

Here, strict feedback refers to the fact that the nonlinear functions and in the equation only depend on states that are fed back to that subsystem. That is, the system has a kind of lower triangular form.

Read more about Strict-feedback Form:  Stabilization, See Also

Famous quotes containing the word form:

    Now, what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else, and root out everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of any service to them. This is the principle on which I bring up my own children, and this is the principle on which I bring up these children. Stick to Facts, sir!
    Charles Dickens (1812–1870)