Strict-feedback Form

Strict-feedback Form

In control theory, dynamical systems are in strict-feedback form when they can be expressed as

\begin{cases} \dot{\mathbf{x}} = f_0(\mathbf{x}) + g_0(\mathbf{x}) z_1\\
\dot{z}_1 = f_1(\mathbf{x},z_1) + g_1(\mathbf{x},z_1) z_2\\
\dot{z}_2 = f_2(\mathbf{x},z_1,z_2) + g_2(\mathbf{x},z_1,z_2) z_3\\
\vdots\\
\dot{z}_i = f_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) + g_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) z_{i+1} \quad \text{ for } 1 \leq i < k-1\\
\vdots\\
\dot{z}_{k-1} = f_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) + g_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) z_k\\
\dot{z}_k = f_k(\mathbf{x},z_1, z_2, \ldots, z_{k-1}, z_k) + g_k(\mathbf{x},z_1, z_2, \dots, z_{k-1}, z_k) u\end{cases}

where

  • with ,
  • are scalars,
  • is a scalar input to the system,
  • vanish at the origin (i.e., ),
  • are nonzero over the domain of interest (i.e., for ).

Here, strict feedback refers to the fact that the nonlinear functions and in the equation only depend on states that are fed back to that subsystem. That is, the system has a kind of lower triangular form.

Read more about Strict-feedback Form:  Stabilization, See Also

Famous quotes containing the word form:

    But as to women, who can penetrate
    The real sufferings of their she condition?
    Man’s very sympathy with their estate
    Has much of selfishness and more suspicion.
    Their love, their virtue, beauty, education,
    But form good housekeepers, to breed a nation.
    George Gordon Noel Byron (1788–1824)