Stretched Exponential Function - Fourier Transform

Fourier Transform

To describe results from spectroscopy or inelastic scattering, the sine or cosine Fourier transform of the stretched exponential is needed. It must be calculated either by numeric integration, or from a series expansion. The series here as well as the one for the distribution function are special cases of the Fox-Wright function. For practical purposes, the Fourier transform may be approximated by the Havriliak-Negami function, though nowadays the numeric computation can be done so efficiently that there is no longer any reason not to use the Kohlrausch-Williams-Watts function in the frequency domain.

Read more about this topic:  Stretched Exponential Function

Famous quotes containing the word transform:

    Bees plunder the flowers here and there, but afterward they make of them honey, which is all theirs; it is no longer thyme or marjoram. Even so with the pieces borrowed from others; one will transform and blend them to make a work that is all one’s own, that is, one’s judgement. Education, work, and study aim only at forming this.
    Michel de Montaigne (1533–1592)