Stress Functions - Beltrami Stress Functions

Beltrami Stress Functions

It can be shown that a complete solution to the equilibrium equations may be written as

Using index notation:

Engineering notation
\sigma_x
= \frac{\partial^2\Phi_{yy}}{\partial z \partial z}
+ \frac{\partial^2\Phi_{zz}}{\partial y \partial y}
-2\frac{\partial^2\Phi_{yz}}{\partial y \partial z} \sigma_{xy}
=-\frac{\partial^2\Phi_{xy}}{\partial z \partial z} -\frac{\partial^2\Phi_{zz}}{\partial x \partial y} +\frac{\partial^2\Phi_{yz}}{\partial x \partial z} +\frac{\partial^2\Phi_{zx}}{\partial y \partial z}
\sigma_y
= \frac{\partial^2\Phi_{xx}}{\partial z \partial z} +\frac{\partial^2\Phi_{zz}}{\partial x \partial x}
-2\frac{\partial^2\Phi_{zx}}{\partial z \partial x} \sigma_{yz}
=-\frac{\partial^2\Phi_{yz}}{\partial x \partial x} -\frac{\partial^2\Phi_{xx}}{\partial y \partial z} +\frac{\partial^2\Phi_{zx}}{\partial y \partial x} +\frac{\partial^2\Phi_{xy}}{\partial z \partial x}
\sigma_z
= \frac{\partial^2\Phi_{yy}}{\partial x \partial x} +\frac{\partial^2\Phi_{xx}}{\partial y \partial y}
-2\frac{\partial^2\Phi_{xy}}{\partial x \partial y} \sigma_{zx}
=-\frac{\partial^2\Phi_{zx}}{\partial y \partial y} -\frac{\partial^2\Phi_{yy}}{\partial z \partial x} +\frac{\partial^2\Phi_{xy}}{\partial z \partial y} +\frac{\partial^2\Phi_{yz}}{\partial x \partial y}

where is an arbitrary second-rank tensor field that is continuously differentiable at least four times, and is known as the Beltrami stress tensor. Its components are known as Beltrami stress functions. is the Levi-Civita pseudotensor, with all values equal to zero except those in which the indices are not repeated. For a set of non-repeating indices the component value will be +1 for even permutations of the indices, and -1 for odd permutations. And is the Nabla operator

Read more about this topic:  Stress Functions

Famous quotes containing the words stress and/or functions:

    A society which is clamoring for choice, which is filled with many articulate groups, each urging its own brand of salvation, its own variety of economic philosophy, will give each new generation no peace until all have chosen or gone under, unable to bear the conditions of choice. The stress is in our civilization.
    Margaret Mead (1901–1978)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)