Stone's Theorem On One-parameter Unitary Groups - Formal Statement

Formal Statement

Let U be a strongly continuous 1-parameter unitary group, then there exists a unique self-adjoint operator A such that

Conversely, let A be a self-adjoint operator on a Hilbert space H. Then

is a strongly continuous one-parameter family of unitary operators.

The infinitesimal generator of {Ut}t is the operator . This mapping is a bijective correspondence. A will be a bounded operator if and only if the operator-valued function is norm continuous.

Stone's theorem can be recast using the language of Fourier transform. The real line R is a locally compact abelian group. Nondegenerate representations of the group C*-algebra C*(R) is in one-to-one correspondence with strongly continuous unitary representations R, i.e. strongly continuous one-parameter family of unitary operators. On the other hand, the Fourier transform is a *-isomorphism between C*(R) and C0(R), the C*-algebra of continuous functions on the line vanishing at infinity. So there is a one-to-one correspondence between strongly continuous one-parameter unitary groups and representations of C0(R). Since every representation of C0(R) corresponds to a self-adjoint operator, Stone's theorem holds.

The precise definition of C*(R) is as follows. Form the convolution algebra on Cc(R), the continuous functions of compact support, where the multiplication is convolution. The completion of this algebra in the L1 norm is a *-algebra, denoted by L1(R). C*(R) is then defined to be the enveloping C*-algebra of L1(R), i.e., its completion in the largest possible C*-norm. It is not trivial that C*(R) is isomorphic to C0(R), under the Fourier transform. A result in this direction is the Riemann–Lebesgue lemma, which says the Fourier transform maps L1(R) to C0(R).

Read more about this topic:  Stone's Theorem On One-parameter Unitary Groups

Famous quotes containing the words formal and/or statement:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.
    Andrew Jackson (1767–1845)