Stirling's Theorem - Stirling's Formula For The Gamma Function

Stirling's Formula For The Gamma Function

For all positive integers,

where Γ denotes the gamma function.

However, the Pi function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied. If Re(z) > 0 then

Repeated integration by parts gives

where Bn is the n-th Bernoulli number (note that the infinite sum is not convergent, so this formula is just an asymptotic expansion). The formula is valid for z large enough in absolute value when |arg(z)| < π−ε, where ε is positive, with an error term of when the first m terms are used. The corresponding approximation may now be written:

A further application of this asymptotic expansion is for complex argument z with constant Re(z). See for example the Stirling formula applied in Im(z) = t of the Riemann-Siegel theta function on the straight line 1/4 + it.

Read more about this topic:  Stirling's Theorem

Famous quotes containing the words stirling, formula and/or function:

    Oh, if thy pride did not our joys control,
    What world of loving wonders shouldst thou see!
    For if I saw thee once transformed in me,
    Then in thy bosom I would pour my soul;
    William Alexander, Earl O Stirling (1580?–1640)

    But suppose, asks the student of the professor, we follow all your structural rules for writing, what about that “something else” that brings the book alive? What is the formula for that? The formula for that is not included in the curriculum.
    Fannie Hurst (1889–1968)

    “... The state’s one function is to give.
    The bud must bloom till blowsy blown
    Its petals loosen and are strown;
    And that’s a fate it can’t evade
    Unless ‘twould rather wilt than fade.”
    Robert Frost (1874–1963)