Formal Statement
The following is perhaps the simplest form of the paradox. Let θ be a vector consisting of n ≥ 3 unknown parameters. To estimate these parameters, a single measurement Xi is performed for each parameter θi, resulting in a vector X of length n. Suppose the measurements are independent, Gaussian random variables, with mean θ and variance 1, i.e.,
Thus, each parameter is estimated using a single noisy measurement, and each measurement is equally inaccurate.
Under such conditions, it is most intuitive (and most common) to use each measurement as an estimate of its corresponding parameter. This so-called "ordinary" decision rule can be written as
The quality of such an estimator is measured by its risk function. A commonly used risk function is the mean squared error, defined as
Surprisingly, it turns out that the "ordinary" estimator proposed above is suboptimal in terms of mean squared error. In other words, in the setting discussed here, there exist alternative estimators which always achieve lower mean squared error, no matter what the value of is.
For a given θ one could obviously define a perfect "estimator" which is always just θ, but this estimator would be bad for other values of θ. The estimators of Stein's paradox are, for a given θ, better than X for some values of X but necessarily worse for others (except perhaps for one particular θ vector, for which the new estimate is always better than X). It is only on average that they are better.
More accurately, an estimator is said to dominate another estimator if, for all values of, the risk of is lower than, or equal to, the risk of, and if the inequality is strict for some . An estimator is said to be admissible if no other estimator dominates it, otherwise it is inadmissible. Thus, Stein's example can be simply stated as follows: The ordinary decision rule for estimating the mean of a multivariate Gaussian distribution is inadmissible under mean squared error risk.
Many simple, practical estimators achieve better performance than the ordinary estimator. The best-known example is the James–Stein estimator, which works by starting at X and moving towards a particular point (such as the origin) by an amount inversely proportional to the distance of X from that point.
For a sketch of the proof of this result, see Proof of Stein's example.
Read more about this topic: Stein's Example
Famous quotes containing the words formal and/or statement:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)