Stefan Problem - Premises To The Mathematical Description

Premises To The Mathematical Description

From a mathematical point of view, the phases are merely regions in which the coefficients of the underlying PDE are continuous and differentiable up to the order of the PDE. In physical problems such coefficients represent properties of the medium for each phase. The moving boundaries (or interfaces) are infinitesimally thin surfaces that separate adjacent phases; therefore, the coefficients of the underlying PDE and its derivatives may suffer discontinuities across interfaces.

The underlying PDE is not valid at phase change interfaces; therefore, an additional condition—the Stefan condition—is needed to obtain closure. The Stefan condition expresses the local velocity of a moving boundary, as a function of quantities evaluated at both sides of the phase boundary, and is usually derived from a physical constraint. In problems of heat transfer with phase change, for instance, the physical constraint is that of conservation of energy, and the local velocity of the interface depends on the heat flux discontinuity at the interface.

Read more about this topic:  Stefan Problem

Famous quotes containing the words premises, mathematical and/or description:

    Men have defined the parameters of every subject. All feminist arguments, however radical in intent or consequence, are with or against assertions or premises implicit in the male system, which is made credible or authentic by the power of men to name.
    Andrea Dworkin (b. 1946)

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    God damnit, why must all those journalists be such sticklers for detail? Why, they’d hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.
    Lyndon Baines Johnson (1908–1973)