Dimensional Interference
Mechanical parts are usually designed to fit precisely together. For example, if a shaft is designed to have a "sliding fit" in a hole, the shaft must be a little smaller than the hole. (Traditional tolerances may suggest that all dimensions fall within those intended tolerances. A process capability study of actual production, however, may reveal normal distributions with long tails.) Both the shaft and hole sizes will usually form normal distributions with some average (arithmetic mean) and standard deviation.
With two such normal distributions, a distribution of interference can be calculated. The derived distribution will also be normal, and its average will be equal to the difference between the means of the two base distributions. The variance of the derived distribution will be the sum of the variances of the two base distributions.
This derived distribution can be used to determine how often the difference in dimensions will be less than zero (i.e., the shaft cannot fit in the hole), how often the difference will be less than the required sliding gap (the shaft fits, but too tightly), and how often the difference will be greater than the maximum acceptable gap (the shaft fits, but not tightly enough).
Read more about this topic: Statistical Interference
Famous quotes containing the words dimensional and/or interference:
“I dont see black people as victims even though we are exploited. Victims are flat, one- dimensional characters, someone rolled over by a steamroller so you have a cardboard person. We are far more resilient and more rounded than that. I will go on showing theres more to us than our being victimized. Victims are dead.”
—Kristin Hunter (b. 1931)
“The truth is, the whole administration under Roosevelt was demoralized by the system of dealing directly with subordinates. It was obviated in the State Department and the War Department under [Secretary of State Elihu] Root and me [Taft was the Secretary of War], because we simply ignored the interference and went on as we chose.... The subordinates gained nothing by his assumption of authority, but it was not so in the other departments.”
—William Howard Taft (18571930)