Ensembles of Classical Mechanical Systems
For an ensemble of a classical mechanical system, one considers the phase space of the given system. A collection of elements from the ensemble can be viewed as a swarm of representative points in the phase space. The statistical properties of the ensemble then depend on a chosen probability measure on the phase space. If a region A of the phase space has larger measure than region B, then a system chosen at random from the ensemble is more likely to be in a microstate belonging to A than B. The choice of this measure is dictated by the specific details of the system and the assumptions one makes about the ensemble in general. For example, the phase space measure of the microcanonical ensemble (see below) is different from that of the canonical ensemble. The normalizing factor of the probability measure is referred to as the partition function of the ensemble. Physically, the partition function encodes the underlying physical structure of the system.
When the measure is time-independent, the ensemble is said to be stationary.
Read more about this topic: Statistical Ensemble (mathematical Physics)
Famous quotes containing the words classical, mechanical and/or systems:
“Against classical philosophy: thinking about eternity or the immensity of the universe does not lessen my unhappiness.”
—Mason Cooley (b. 1927)
“Prejudices are so to speak the mechanical instincts of men: through their prejudices they do without any effort many things they would find too difficult to think through to the point of resolving to do them.”
—G.C. (Georg Christoph)
“I am beginning to suspect all elaborate and special systems of education. They seem to me to be built up on the supposition that every child is a kind of idiot who must be taught to think.”
—Anne Sullivan (18661936)