Stationary Set - Jech's Notion

Jech's Notion

There is also a notion of stationary subset of, for a cardinal and a set such that, where is the set of subsets of of cardinality : . This notion is due to Thomas Jech. As before, is stationary if and only if it meets every club, where a club subset of is a set unbounded under and closed under union of chains of length at most . These notions are in general different, although for and they coincide in the sense that is stationary if and only if is stationary in .

The appropriate version of Fodor's lemma also holds for this notion.

Read more about this topic:  Stationary Set

Famous quotes containing the word notion:

    Without a notion of the transcendental, human beings would, indeed, be animals; however, only fools can be convinced of it, and only degenerates need such a conviction.
    Franz Grillparzer (1791–1872)