Ends of Graphs
Let Γ be a connected graph where the degree of every vertex is finite. One can view Γ as a topological space by giving it the natural structure of a one-dimensional cell complex. Then the ends of Γ are the ends of this topological space. A more explicit definition of the number of ends of a graph is presented below for completeness.
Let n ≥ 0 be a non-negative integer. The graph Γ is said to satisfy e(Γ) ≤ n if for every finite collection F of edges of Γ the graph Γ − F has at most n infinite connected components. By definition, e(Γ) = m if e(Γ) ≤ m and if for every 0 ≤ n < m the statement e(Γ) ≤ n is false. Thus e(Γ) = m if m is the smallest nonnegative integer n such that e(Γ) ≤ n. If there does not exist an integer n ≥ 0 such that e(Γ) ≤ n, put e(Γ) = ∞. The number e(Γ) is called the number of ends of Γ.
Informally, e(Γ) is the number of "connected components at infinity" of Γ. If e(Γ) = m < ∞, then for any finite set F of edges of Γ there exists a finite set K of edges of Γ with F ⊆ K such that Γ − F has exactly m infinite connected components. If e(Γ) = ∞, then for any finite set F of edges of Γ and for any integer n ≥ 0 there exists a finite set K of edges of Γ with F ⊆ K such that Γ − K has at least n infinite connected components.
Read more about this topic: Stallings Theorem About Ends Of Groups
Famous quotes containing the words ends of and/or ends:
“In frames as large as rooms that face all ways
And block the ends of streets with giant loaves,
Screen graves with custard, cover slums with praise
Of motor-oil and cuts of salmon, shine
Perpetually these sharply-pictured groves
Of how life should be.”
—Philip Larkin (19221986)
“More and more, when faced with the world of men, the only reaction is one of individualism. Man alone is an end unto himself. Everything one tries to do for the common good ends in failure.”
—Albert Camus (19131960)