Stable Distribution - Series Representation

Series Representation

The stable distribution can be restated as the real part of a simpler integral:(Peach 1981, § 4.5)

Expressing the second exponential as a Taylor series, we have:

where . Reversing the order of integration and summation, and carrying out the integration yields:

which will be valid for x ≠ μ and will converge for appropriate values of the parameters. (Note that the n = 0 term which yields a delta function in x−μ has therefore been dropped.) Expressing the first exponential as a series will yield another series in positive powers of x−μ which is generally less useful.

Read more about this topic:  Stable Distribution

Famous quotes containing the word series:

    Depression moods lead, almost invariably, to accidents. But, when they occur, our mood changes again, since the accident shows we can draw the world in our wake, and that we still retain some degree of power even when our spirits are low. A series of accidents creates a positively light-hearted state, out of consideration for this strange power.
    Jean Baudrillard (b. 1929)