Stable Distribution - Applications

Applications

Stable distributions owe their importance in both theory and practice to the generalization of the central limit theorem to random variables without second (and possibly first) order moments and the accompanying self-similarity of the stable family. It was the seeming departure from normality along with the demand for a self-similar model for financial data (i.e. the shape of the distribution for yearly asset price changes should resemble that of the constituent daily or monthly price changes) that led Benoît Mandelbrot to propose that cotton prices follow an alpha-stable distribution with α equal to 1.7. Lévy distributions are frequently found in analysis of critical behavior and financial data (Voit 2003, § 5.4.3).

They are also found in spectroscopy as a general expression for a quasistatically pressure-broadened spectral line (Peach 1981, § 4.5).

The statistics of solar flares are described by a non-Gaussian distribution. The solar flare statistics were shown to be describable by a Lévy distribution and it was assumed that intermittent solar flares perturb the intrinsic fluctuations in Earth’s average temperature. The end result of this perturbation is that the statistics of the temperature anomalies inherit the statistical structure that was evident in the intermittency of the solar flare data.

Lévy distribution of solar flare waiting time events (time between flare events) was demonstrated for CGRO BATSE hard x-ray solar flares December 2001. Analysis of the Lévy statistical signature revealed that two different memory signatures were evident; one related to the solar cycle and the second whose origin appears to be associated with a localized or combination of localized solar active region effects.

Read more about this topic:  Stable Distribution