Square Roots of Negative and Complex Numbers
Second leaf of the complex square root Using the Riemann surface of the square root, one can see how the two leaves fit together
The square of any positive or negative number is positive, and the square of 0 is 0. Therefore, no negative number can have a real square root. However, it is possible to work with a more inclusive set of numbers, called the complex numbers, that does contain solutions to the square root of a negative number. This is done by introducing a new number, denoted by i (sometimes j, especially in the context of electricity where "i" traditionally represents electric current) and called the imaginary unit, which is defined such that i2 = –1. Using this notation, we can think of i as the square root of –1, but notice that we also have (–i)2 = i2 = –1 and so –i is also a square root of –1. By convention, the principal square root of –1 is i, or more generally, if x is any positive number, then the principal square root of –x is
The right side (as well as its negative) is indeed a square root of –x, since
For every non-zero complex number z there exist precisely two numbers w such that w2 = z: the principal square root of z (defined below), and its negative.
Read more about this topic: Square Root
Famous quotes containing the words square, roots, negative, complex and/or numbers:
“A man who is good enough to shed his blood for his country is good enough to be given a square deal afterwards. More than that no man is entitled to, and less than that no man shall have.”
—Theodore Roosevelt (18581919)
“A poet must be a psychologist, but a secret one: he should know and feel the roots of phenomena but present only the phenomena themselvesin full bloom or as they fade away.”
—Ivan Sergeevich Turgenev (18181883)
“The working woman may be quick to see any problems with children as her fault because she isnt as available to them. However, the fact that she is employed is rarely central to the conflict. And overall, studies show, being employed doesnt have negative effects on children; carefully done research consistently makes this clear.”
—Grace Baruch (20th century)
“When distant and unfamiliar and complex things are communicated to great masses of people, the truth suffers a considerable and often a radical distortion. The complex is made over into the simple, the hypothetical into the dogmatic, and the relative into an absolute.”
—Walter Lippmann (18891974)
“Green grow the rushes-O
What is your one-O?”
—Unknown. Carol of the Numbers (l. 23)