Formula
The first few square pyramidal numbers are:
- 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819 (sequence A000330 in OEIS).
These numbers can be expressed in a formula as
This is a special case of Faulhaber's formula, and may be proved by a straightforward mathematical induction. An equivalent formula is given in Fibonacci's Liber Abaci (1202, ch. II.12).
In modern mathematics, figurate numbers are formalized by the Ehrhart polynomials. The Ehrhart polynomial L(P,t) of a polyhedron P is a polynomial that counts the number of integer points in a copy of P that is expanded by multiplying all its coordinates by the number t. The Ehrhart polynomial of a pyramid whose base is a unit square with integer coordinates, and whose apex is an integer point at height one above the base plane, is (t + 1)(t + 2)(2t + 3)/6 = Pt + 1.
Read more about this topic: Square Pyramidal Number
Famous quotes containing the word formula:
“Ideals possess the strange quality that if they were completely realized they would turn into nonsense. One could easily follow a commandment such as Thou shalt not kill to the point of dying of starvation; and I might establish the formula that for the proper functioning of the mesh of our ideals, as in the case of a strainer, the holes are just as important as the mesh.”
—Robert Musil (18801942)
“In the most desirable conditions, the child learns to manage anxiety by being exposed to just the right amounts of it, not much more and not much less. This optimal amount of anxiety varies with the childs age and temperament. It may also vary with cultural values.... There is no mathematical formula for calculating exact amounts of optimal anxiety. This is why child rearing is an art and not a science.”
—Alicia F. Lieberman (20th century)
“But suppose, asks the student of the professor, we follow all your structural rules for writing, what about that something else that brings the book alive? What is the formula for that? The formula for that is not included in the curriculum.”
—Fannie Hurst (18891968)