Spray (mathematics) - Formal Definitions

Formal Definitions

Let M be a differentiable manifold and (TMTM,M) its tangent bundle. Then a vector field H on TM (that is, a section of the double tangent bundle TTM) is a semispray on M, if any of the three following equivalent conditions holds:

  • TM)*Hξ = ξ.
  • JH=V, where J is the tangent structure on TM and V is the canonical vector field on TM\0.
  • jH=H, where j:TTMTTM is the canonical flip and H is seen as a mapping TMTTM.

A semispray H on M is a (full) spray if any of the following equivalent conditions hold:

  • Hλξ = λ*Hξ), where λ*:TTMTTM is the push-forward of the multiplication λ:TMTM by a positive scalar λ>0.
  • The Lie-derivative of H along the canonical vector field V satisfies =H.
  • The integral curves t→ΦHt(ξ)∈TM\0 of H satisfy ΦHt(λξ)=ΦHλt(ξ) for any λ>0.

Let (xii) be the local coordinates on TM associated with the local coordinates (xi) on M using the coordinate basis on each tangent space. Then H is a semispray on M if and only if it has a local representation of the form

on each associated coordinate system on TM. The semispray H is a (full) spray, if and only if the spray coefficients Gi satisfy

Read more about this topic:  Spray (mathematics)

Famous quotes containing the words formal and/or definitions:

    The bed is now as public as the dinner table and governed by the same rules of formal confrontation.
    Angela Carter (1940–1992)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)