Splitting of Prime Ideals in Galois Extensions - Computing The Factorisation

Computing The Factorisation

Suppose that we wish to determine the factorisation of a prime ideal P of OK into primes of OL. We will assume that the extension L/K is a finite separable extension; the extra hypothesis of normality in the definition of Galois extension is not necessary.

The following procedure (Neukirch, p47) solves this problem in many cases. The strategy is to select an integer θ in OL so that L is generated over K by θ (such a θ is guaranteed to exist by the primitive element theorem), and then to examine the minimal polynomial H(X) of θ over K; it is a monic polynomial with coefficients in OK. Reducing the coefficients of H(X) modulo P, we obtain a monic polynomial h(X) with coefficients in F, the (finite) residue field OK/P. Suppose that h(X) factorises in the polynomial ring F as

where the hj are distinct monic irreducible polynomials in F. Then, as long as P is not one of finitely many exceptional primes (the precise condition is described below), the factorisation of P has the following form:

where the Qj are distinct prime ideals of OL. Furthermore, the inertia degree of each Qj is equal to the degree of the corresponding polynomial hj, and there is an explicit formula for the Qj:

In the Galois case, the inertia degrees are all equal, and the ramification indices e1 = ... = en are all equal.

The exceptional primes, for which the above result does not necessarily hold, are the ones not relatively prime to the conductor of the ring OK. The conductor is defined to be the ideal

it measures how far the order OK is from being the whole ring of integers (maximal order) OL.

A significant caveat is that there exist examples of L/K and P such that there is no available θ that satisfies the above hypotheses (see for example ). Therefore the algorithm given above cannot be used to factor such P, and more sophisticated approaches must be used, such as that described in.

Read more about this topic:  Splitting Of Prime Ideals In Galois Extensions