Spitzer Space Telescope - Results

Results

The first images taken by SST were designed to show off the abilities of the telescope and showed a glowing stellar nursery; a big swirling, dusty galaxy; a disc of planet-forming debris; and organic material in the distant universe. Since then, many monthly press releases have highlighted Spitzer's capabilities, as the NASA and ESA images do for the Hubble Space Telescope.

As one of its most noteworthy observations, in 2005, SST became the first telescope to directly capture the light from extrasolar planets, namely the "hot Jupiters" HD 209458b and TrES-1. (It did not resolve that light into actual images though.) This was the first time extrasolar planets had actually been visually seen; earlier observations had been indirectly made by drawing conclusions from behaviors of the stars the planets were orbiting. The telescope also discovered in April 2005 that Cohen-kuhi Tau/4 had a planetary disk that was vastly younger and contained less mass than previously theorized, leading to new understandings of how planets are formed.

While some time on the telescope is reserved for participating institutions and crucial projects, astronomers around the world also have the opportunity to submit proposals for observing time. Important targets include forming stars (young stellar objects, or YSOs), planets, and other galaxies. Images are freely available for educational and journalistic purposes.

In 2004, it was reported that Spitzer had spotted a faintly glowing body that may be the youngest star ever seen. The telescope was trained on a core of gas and dust known as L1014 which had previously appeared completely dark to ground-based observatories and to ISO (Infrared Space Observatory), a predecessor to Spitzer. The advanced technology of Spitzer revealed a bright red hot spot in the middle of L1014.

Scientists from the University of Texas at Austin, who discovered the object, believe the hot spot to be an example of early star development, with the young star collecting gas and dust from the cloud around it. Early speculation about the hot spot was that it might have been the faint light of another core that lies 10 times further from Earth but along the same line of sight as L1014. Follow-up observation from ground-based near-infrared observatories detected a faint fan-shaped glow in the same location as the object found by Spitzer. That glow is too feeble to have come from the more distant core, leading to the conclusion that the object is located within L1014. (Young et al., 2004)

In 2005, astronomers from the University of Wisconsin at Madison and Whitewater determined, on the basis of 400 hours of observation on the Spitzer Space Telescope, that the Milky Way Galaxy has a more substantial bar structure across its core than previously recognized.

Also in 2005, astronomers Alexander Kashlinsky and John Mather of NASA's Goddard Space Flight Center reported that one of Spitzer's earliest images may have captured the light of the first stars in the universe. An image of a quasar in the Draco constellation, intended only to help calibrate the telescope, was found to contain an infrared glow after the light of known objects was removed. Kashlinsky and Mather are convinced that the numerous blobs in this glow are the light of stars that formed as early as 100 million years after the big bang, red shifted by cosmic expansion.

In March 2006, astronomers reported an 80-light-year-long nebula near the center of the Milky Way Galaxy, the Double Helix Nebula, which is, as the name implies, twisted into a double spiral shape. This is thought to be evidence of massive magnetic fields generated by the gas disc orbiting the supermassive black hole at the galaxy's center, 300 light years from the nebula and 25,000 light years from Earth. This nebula was discovered by the Spitzer Space Telescope, and published in the magazine Nature on March 16, 2006.

In May 2007, astronomers successfully mapped the atmospheric temperature of HD 189733 b, thus obtaining the first map of some kind of an extrasolar planet.

Since September 2006 the telescope participates in a series of surveys called the Gould Belt Survey, observing the Gould's Belt region in multiple wavelengths. The first set of observations by the Spitzer Space Telescope were completed from September 21, 2006 through September 27. Resulting from these observations, the team of astronomers led by Dr. Robert Gutermuth, of the Harvard-Smithsonian Center for Astrophysics reported the discovery of Serpens South, a cluster of 50 young stars in the Serpens constellation.

Scientists have long wondered how tiny silicate crystals, which need high temperatures to form, have found their way into frozen comets, born in the very cold environment of the Solar System's outer edges. The crystals would have begun as non-crystallized, amorphous silicate particles, part of the mix of gas and dust from which the Solar System developed. This mystery has deepened with the results of the Stardust (spacecraft) sample return mission, which captured particles from Comet Wild 2. Many of the Stardust (spacecraft) particles were found to have formed at temperatures in excess of 1000 K.

In May 2009, Spitzer researchers from Germany, Hungary and the Netherlands found that amorphous silicate appears to have been transformed into crystalline form by an outburst from a star. They detected the infrared signature of forsterite silicate crystals on the disk of dust and gas surrounding the star EX Lupi during one of its frequent flare-ups, or outbursts, seen by Spitzer in April 2008. These crystals were not present in Spitzer's previous observations of the star's disk during one of its quiet periods. These crystals appear to have formed by radiative heating of the dust within 0.5 AU of EX Lupi.

In August 2009, the telescope found evidence of a high-speed collision between two burgeoning planets orbiting a young star.

In October 2009, astronomers Anne J. Verbiscer, Michael F. Skrutskie, and Douglas P. Hamilton published findings of the "Phoebe ring" of Saturn, which was found with the telescope; the ring is a huge, tenuous disc of material extending from 128 to 207 times the radius of Saturn.

Spitzer observations, announced in May 2011, indicate that tiny forsterite crystals might be falling down like rain on to the protostar HOPS-68. The discovery of the forsterite crystals in the outer collapsing cloud of the proto-star is surprising, because the crystals form at lava-like high temperatures, yet they are found in the molecular cloud where the temperatures are about minus 170 degrees Celsius. This led the team of astronomers to speculate that the bipolar outflow from the young star may be transporting the forsterite crystals from near the star's surface to the chilly outer cloud.

In January 2012, it was reported that further analysis of the Spitzer observations of Ex Lupi can be understood if the forsterite crystalline dust was moving away from the protostar at a remarkable average speed of 38 kilometres per second. It would appear that such high speeds can only arise if the dust grains had been ejected by a bipolar outflow close to the star. Such observations are consistent with an astrophysical theory, developed in the early 1990s, where it was suggested that bipolar outflows garden or transform the disks of gas and dust that surround protostars by continually ejecting reprocessed, highly heated material from the inner disk, adjacent to the protostar, to regions of the accretion disk further away from the protostar.

Read more about this topic:  Spitzer Space Telescope

Famous quotes containing the word results:

    For every life and every act
    Consequence of good and evil can be shown
    And as in time results of many deeds are blended
    So good and evil in the end become confounded.
    —T.S. (Thomas Stearns)

    The chief benefit, which results from philosophy, arises in an indirect manner, and proceeds more from its secret, insensible influence, than from its immediate application.
    David Hume (1711–1776)

    Social improvement is attained more readily by a concern with the quality of results than with the purity of motives.
    Eric Hoffer (1902–1983)