Sphere Theorem

In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, n-dimensional Riemannian manifold with sectional curvature taking values in the interval then M is homeomorphic to the n-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in .) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature.

Note that the conclusion is false if the sectional curvatures are allowed to take values in the closed interval . The standard counterexample is complex projective space with the Fubini-Study metric; sectional curvatures of this metric take on values between 1 and 4, with endpoints included. Other counterexamples may be found among the rank one symmetric spaces.

Read more about Sphere Theorem:  Differentiable Sphere Theorem, History of The Sphere Theorem

Famous quotes containing the words sphere and/or theorem:

    O sun,
    Burn the great sphere thou mov’st in! darkling stand
    The varying shore o’ th’ world!
    William Shakespeare (1564–1616)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)