Sphere Packing - Hyperbolic Space

Hyperbolic Space

Although the concept of circles and spheres can be extended to hyperbolic space, finding the densest packing becomes much more difficult. In a hyperbolic space there is no limit to the number of spheres that can surround another sphere (for example, Ford circles can be thought of as an arrangement of identical hyperbolic circles in which each circle is surrounded by an infinite number of other circles). The concept of average density also becomes much more difficult to define accurately. The densest packings in any hyperbolic space are almost always irregular.

Read more about this topic:  Sphere Packing

Famous quotes containing the word space:

    Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.
    Blaise Pascal (1623–1662)