Spectrum of A Matrix

Spectrum Of A Matrix

In mathematics, the spectrum of a (finite-dimensional) matrix is the set of its eigenvalues. This notion can be extended to the spectrum of an operator in the infinite-dimensional case.

The determinant equals the product of the eigenvalues. Similarly, the trace equals the sum of the eigenvalues. From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of all the nonzero eigenvalues (the density of multivariate normal distribution will need this quantity).

Read more about Spectrum Of A Matrix:  Definition

Famous quotes containing the word matrix:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)