Properties
Let X be a spectral space and let K(X) be as before. Then:
- K(X) is a bounded sublattice of subsets of X.
- Every closed subspace of X is spectral.
- An arbitrary intersection of quasi-compact and open subsets of X (hence of elements from K(X)) is again spectral.
- X is T0 by definition, but in general not T1. In fact a spectral space is T1 if and only if it is Hausdorff (or T2) if and only if it is a boolean space.
- X can be seen as a Pairwise Stone space.
Read more about this topic: Spectral Space
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)