Equivalent Descriptions
Let X be a topological space. Each of the following properties are equivalent to the property of X being spectral:
- X is homeomorphic to a projective limit of finite T0-spaces.
- X is homeomorphic to the spectrum of a bounded distributive lattice L. In this case, L is isomorphic (as a bounded lattice) to the lattice K(X) (this is called Stone representation of distributive lattices).
- X is homeomorphic to the spectrum of a commutative ring.
- X is the topological space determined by a Priestley space.
- X is a coherent space in the sense of topology (this indeed is only another name).
Read more about this topic: Spectral Space
Famous quotes containing the words equivalent and/or descriptions:
“But then people dont read literature in order to understand; they read it because they want to re-live the feelings and sensations which they found exciting in the past. Art can be a lot of things; but in actual practice, most of it is merely the mental equivalent of alcohol and cantharides.”
—Aldous Huxley (18941963)
“The fundamental laws of physics do not describe true facts about reality. Rendered as descriptions of facts, they are false; amended to be true, they lose their explanatory force.”
—Nancy Cartwright (b. 1945)