Further Examples
Some notable spectral sequences are:
- Adams spectral sequence in stable homotopy theory
- Adams–Novikov spectral sequence, a generalization to extraordinary cohomology theories.
- Atiyah–Hirzebruch spectral sequence of an extraordinary cohomology theory
- Bar spectral sequence for the homology of the classifying space of a group.
- Barratt spectral sequence converging to the homotopy of the initial space of a cofibration.
- Bloch–Lichtenbaum spectral sequence converging to the algebraic K-theory of a field.
- Bockstein spectral sequence relating the homology with mod p coefficients and the homology reduced mod p.
- Bousfield–Kan spectral sequence converging to the homotopy colimit of a functor.
- Cartan–Leray spectral sequence converging to the homology of a quotient space.
- Čech-to-derived functor spectral sequence from Čech cohomology to sheaf cohomology.
- Change of rings spectral sequences for calculating Tor and Ext groups of modules.
- Chromatic spectral sequence for calculating the initial terms of the Adams–Novikov spectral sequence.
- Connes spectral sequences converging to the cyclic homology of an algebra.
- EHP spectral sequence converging to stable homotopy groups of spheres
- Eilenberg–Moore spectral sequence for the singular cohomology of the pullback of a fibration
- Federer spectral sequence converging to homotopy groups of a function space.
- Frölicher spectral sequence starting from the Dolbeault cohomology and converging to the algebraic de Rham cohomology of a variety.
- Green's spectral sequence for Koszul cohomology
- Grothendieck spectral sequence for composing derived functors
- Hodge–de Rham spectral sequence converging to the algebraic de Rham cohomology of a variety.
- Hurewicz spectral sequence for calculating the homology of a space from its homotopy.
- Hyperhomology spectral sequence for calculating hyper homology.
- Künneth spectral sequence for calculating the homology of a tensor product of differential algebras.
- Leray spectral sequence converging to the cohomology of a sheaf.
- Leray–Serre spectral sequence of a fibration
- Lyndon–Hochschild–Serre spectral sequence in group (co)homology
- May spectral sequence for calculating the Tor or Ext groups of an algebra.
- Miller spectral sequence converging to the mod p stable homology of a space.
- Milnor spectral sequence is another name for the bar spectral sequence.
- Moore spectral sequence is another name for the bar spectral sequence.
- Quillen spectral sequence for calculating the homotopy of a simplicial group.
- Rothenberg–Steenrod spectral sequence is another name for the bar spectral sequence.
- Spectral sequence of a differential filtered group: described in this article.
- Spectral sequence of a double complex: described in this article.
- Spectral sequence of an exact couple: described in this article.
- Universal coefficient spectral sequence
- van Est spectral sequence converging to relative Lie algebra cohomology.
- van Kampen spectral sequence for calculating the homotopy of a wedge of spaces.
Read more about this topic: Spectral Sequences
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)